
MEng Final Year Project

Imperial College London
Department of Computing

Augmented code editor for
a functional programming
language
Harry Lachenmayer

Supervisor: Prof. Susan Eisenbach

1

2

Abstract

Integrated development environments (IDEs) are very powerful and
complex tools which help programmers to understand the programs they
are developing. Such sophisticated programming tools leverage the unique
properties of a single programming language and environment to provide
specific features to aid programming. The only IDEs in wide use today are
designed for imperative, object-oriented programming languages; practi-
cally none exist for pure functional programming languages such as Haskell.
This is surprising, since such programming languages have a number of
unique properties which make them particularly suitable for creating novel
editing experiences.

The aim of this project is to create an editing environment for a pure
functional programming language. This editor allows the programmer
to instantly inspect any definitions in the program, and enables context-
specific editing interactions for certain types of values. The editor exploits
the abstract structure of the program to enable these interactions. In
contrast to traditional “structural editors”, all changes made using the
structural interface are also performed on a textual level. This allows
the editor to integrate with existing programming systems and workflows,
such as version control systems, which is a weakness of current structural
editing tools.

In this project, I explore a number of innovative systems for program-
ming which attempt to move programming away from editing plain text,
and explore the design and implementation of a novel “augmented” code
editor which combines the advantages of structural editing and plain text
editing.

3

4

Acknowledgements

I would like to thank the following people:

Michal Srb – for endless late-night discussions over the past four years about
the terrible state of programming, and what we will do to fix it.

My supervisor, Susan Eisenbach – for giving me a place in the Haskell tribe.

My second supervisor, Sophia Drossopoulou – for terrifyingly incisive questions
and feedback.

My friends, particularly Christina, Cíara, Emi and Sean – for letting me escape
the world of programming when I needed to.

My parents, Karin & Bernd Lachenmayer – for always allowing me to tread my
own path.

And most of all, my grandfather, Helmut Geese – for introducing me to the
beautiful worlds of programming, mathematics and music.

Without you, none of these ideas would have existed. Thank you.

5

6

Contents

1 Introduction 11

2 Principles 15

2.1 Creators Need an Immediate Connection to What They Create . 15

2.2 Environment & Language . 15

2.3 Human & Machine . 17

2.4 Integrate with Existing Systems 17

3 Prior Work 19

3.1 Bret Victor – Inventing on Principle 19

3.2 Elm’s Time-Travelling Debugger and Elm Reactor 22

3.3 Light Table . 24

3.4 Lamdu . 27

3.5 Tangible Values . 31

3.6 “Blocks”-based graphical programming environments: Scratch
and Hopscotch . 34

3.7 Touch-based programming environments: TouchDevelop 35

3.8 Notebook environments: IPython Notebook and Gorilla REPL . 37

3.9 Conclusion . 40

4 Functional Reactive Programming with Elm 43

4.1 Definitions: Immutable Values, Functions and Types 43

4.2 Evaluation: Purity and Referential Transparency 45

4.3 Collections and Higher-Order Functions: map, filter, fold . . . 46

4.4 Structured Values: Tuples, Records and Sum Types 49

4.5 Dealing with Time: Functional Reactive Programming 51

4.6 Putting It All Together: The Elm Architecture 52

7

5 Design 56

5.1 Types . 56

5.2 Definitions: Functions & Values 57

5.3 Function Composition via Drag & Drop 58

5.4 Evaluating Definitions . 61

5.5 Interactive Editing . 63

5.6 Errors . 65

5.7 Conclusion . 66

6 Arrowsmith 68

6.1 User interface . 69

6.1.1 Definitions . 69

6.1.2 Imports . 74

6.1.3 Type definitions . 74

6.1.4 Evaluating a Module . 76

6.1.5 Plain Text View . 76

6.1.6 Project View . 76

6.2 Architecture . 78

6.3 Front-end . 78

6.3.1 Editor . 79

6.3.2 Environment . 82

6.3.3 Value Views . 83

6.4 Back-end . 85

6.4.1 Web Server . 85

6.4.2 Compilation . 86

6.4.3 Module . 87

6.4.4 Editing . 88

6.5 Limitations . 89

8

7 Evaluation 92

7.1 read the vocabulary – what do these words mean? 92

7.2 see the state – what is the computer thinking? 93

7.3 follow the flow – what happens when? 94

7.4 create by reacting – start somewhere, then sculpt 95

7.5 create by abstracting – start concrete, then generalize 96

7.6 Conclusion . 97

8 Future Work 98

9 Conclusion 100

Bibliography 102

9

10

1 Introduction

Programming editors have not fundamentally changed since the 1970s. In 2015,
most of us still program by editing a plain text file using a text editor which
display a small contiguous section of the file on the screen, navigating a cursor
around the screen using our keyboards.

Compared to the average consumer-facing app, most programming tools in
use today seem downright archaic. Yet, programmers defend these tools with
religious zealotry. Indeed, after having invested nearly a decade of my life
committing vim’s editing commands to my muscle memory, I can understand
why we have not moved on: tools such as vim or emacs give the programmer
text manipulation superpowers, and the ability to transform twenty lines of code
in three keystrokes is still as compelling as it was forty years ago.

However, the image of the furiously typing hacker is a romantic one. Indeed,
programmer folklore suggests that professional programmers write about ten
lines of code per day.

In reality, the vast majority of a programmer’s time is spent either looking at
code, or looking at errors, in an attempt at trying to figure out what the code
does. A programmer has to build a complex mental model of the program,
essentially executing the code in her head.

A text editor, no matter how efficiently it may edit text, provides absolutely
no help with this task. Of course, a programming system does not consist only
of a text editor: there’s the compiler, debugger, version control, bug tracker,
documentation, etc.

Most of a programmer’s day is spent switching between these various tools.
We write some code, compile it, run it, it doesn’t do what we want, add some
log statements, compile it, run it, still doesn’t do what we want, load it in a
debugger, write some more code, ad nauseam.

To solve this problem, we created “integrated development environments” (IDEs).
IDEs are very powerful tools which enable the programmer to edit, compile, run
and debug programs in one single place. In particular, these tools incorporate
some very helpful features for making sense of a program. A good IDE allows
the programmer to navigate through large codebases efficiently, and to perform
powerful restructuring of code.

In order to support these features, most IDEs tend to be tied to a single
programming language. The only IDEs in wide use today are designed for
imperative, object-oriented languages such as Java or variants of C, such as C++
or Objective-C.

Such powerful tools currently do not exist for functional programming languages
such as Haskell – programming in a functional programming language nowadays
tends to be an exercise in switching between various incompatible command-line

11

tools. I find this surprising, since pure functional programming languages have
a number of interesting properties which enable some powerful editing features.

Programming in a functional programming language is a very different experience
to programming in an imperative language. In an imperative language, the
programmer writes lines of code which get executed one after another. These
lines of code might declare new variables, or assign new values to variables. Since
these lines of code depend on and manipulate state established by previous lines,
single lines of code are rarely meaningful outside their specific context inside a
procedure.

In contrast, in a pure functional program, the programmer creates definitions
which establish “universal truths” within a program. These definitions can be
either constant values, or “pure” functions. Functions can be seen as values
which are dependent on other values. A pure function is a function whose output
value is always the same when given the same inputs.

The concept of variables does not exist in functional programming. Once a value
is defined, it can never be changed. The only way to “change” a value is to apply
a function to it.

A pure functional program is simply a collection of definitions. For the compu-
tations specified in the definitions to be performed, they need to be evaluated.
Since values never change, it is irrelevant when a value is evaluated. This is
a key insight which has important implications for the design of programming
tools for functional programming.

Due to the fundamentally different nature of functional programming, many
programming tools designed for imperative programs are not very useful. One
such example is the step-by-step debugger, which allows the programmer to
pause the execution of her program and to step through instructions one step at
a time. Since functional programs are not executed in a linear fashion, it is not
very helpful to step through the code line by line. Instead, tools are required
which allow the programmer to inspect the flow of values through the program
as they are being evaluated. Various implementations of such tools already exist.
These will be described in section 3.

Inspired by the insight that definitions can be evaluated independently, we will
explore the idea that definitions can also be edited independently. Current
programming editors allow the programmer to edit a program one file at a time.
Instead, I propose exposing separate editing fields for each function. While
this is a subtle change, it enables some powerful new features. In particular,
this enables us to expose a simple interface for evaluating definitions in line
with the code. Additionally this change allows us to explore some ideas for
context-specific interactive editing tools which move beyond plain text editing.

Rather than editing code as plain text, it is possible to edit a program on a
structural level, using a “structural editor”. Structural editing tools allow the
programmer to manipulate an interactive visual representation of a program’s

12

abstract syntax tree (AST). A big advantage of this approach is that it entirely
removes an entire class of programming errors: the syntax error.

In section 3, I will examine a number of tools which provide unique ways of editing
a program. Some of these tools enable completely new editing interactions that
are far superior to editing plain text. While structural editors are conceptually
very appealing, none of these tools have ever had mainstream success. I argue that
this lack of success is not mainly due to limitations in the editing interactions.

Instead, I argue that these tools have failed mostly because they tend to operate
on a specialised environment and support limited interaction with currently
established programming tools and workflows. Many such tools try to eliminate
the textual representation of a program entirely, replacing it with novel repre-
sentations such as “blocks” or “bubbles”. Such representations, while powerful
in some respects, limit the programmer in others: some changes that are trivial
to perform in plain text become extremely tedious in such editing interfaces.

Since these tools do away with text entirely, currently existing structural editors
are completely incompatible with essential tools for programming, such as version
control systems. Thus, choosing to use such a structural editing environment
tends to be an “all or nothing” proposition. Convincing an entire team or
organisation to switch over to some unproven editing environment which is
incompatible with nearly every other programming tool is effectively impossible.

Plain text has the unique advantage that it can be manipulated and inspected
with a huge number of specialised tools; text truly is the “universal interface”
extolled by the UNIX philosophy. Programmers have the freedom to choose
whichever editor they like best, and additionally, text can be manipulated
extremely efficiently with a huge number of non-interactive processing tools.

I thus argue that replacing text editing with structural editing is a misguided
goal. Rather, I propose that programming tools should augment the plain text
editing experience by giving the programmer contextually relevant structural
editing interfaces, while still operating on plain text. The programmer should be
able to change freely between different editing interfaces relevant to the task at
hand. Any changes made with such editing interfaces should manifest themselves
in a change in the textual representation of the program.

A key insight is that the representation of data is independent of the data itself.
In the functional programming paradigm, it can be said that the representation of
data is a function of the data. This insight applies to data which is manipulated
by a program, but also to the program itself: plain text is merely a certain
representation of the abstract structure of a program, and can be replaced by
any other representation which acts on this structure. We will explore several
consequences of this insight, especially the unique editing interactions it enables.

The aim of this project is to create a new editing environment which exploits the
unique properties of a functional programming language. The specific program-
ming language I chose is a language called Elm. This is a functional reactive

13

programming language which is specifically designed for creating interactive
programs with graphical interfaces. This language has a number of extremely
interesting properties which enable some unique editing interactions. We will
explore these in detail in section 4.

In the course of this project, I created a number of novel user interface prototypes
which take advantage of Elm’s unique features. This design work is described in
section 5. I then used some of the insights gained from this to develop a working
system, called Arrowsmith. Its user interface and implementation are described
in section 6.

This system vastly improves on many other programming environments in some
aspects of the programming experience. Big improvements in some other aspects
are enabled, but not implemented. This is critically assessed in section 7, and
specific possibilities for future work are discussed in section 8.

14

2 Principles

One of the most influential figures in the development of programming tools
in recent years has been Bret Victor. In his keynote talk at CUSEC 2012,
entitled “Inventing on Principle”[3], he lays out some fundamental principles for
programming, as well as demonstrating some live programming environments.
The main message I have taken from this lecture is the importance of “finding a
guiding principle for your work, something you believe is important and necessary
and right – and using that to guide what you do.” [3], 00:36

This project is guided by a number of fundamental principles which I hold
to be essential for the successful design and evaluation of any programming
environment. These combinations of these principles provide a clear conceptual
framework, which I will continuously refer to throughout this report.

2.1 Creators Need an Immediate Connection to What
They Create

The first such principle is that “creators need an immediate connection to
what they create”, [3], 02:00 Any time you (the programmer, the creator, the
“thinker”) make a change or make a decision, you should see the effects of that
change immediately.

This principle is violated by most current programming tools: “You type a bunch
of code into a text editor, kind of imagining in your head what each line of code
is going to do. Then you compile and run, and something comes out. . . . But if
there’s anything wrong with the scene, or if I want to make further changes, or I
have further ideas, I have to go back to the code. And I edit the code, compile
and run, see what it looks like. Anything wrong, I go back to the code. Most of
my time is spent working in the code, working in a text editor blindly, without
an immediate connection to . . . what I’m actually trying to make.” [3], 02:35

In the talk, he explores some solutions to this problem, which I will explore in
depth in secion 3.1.

2.2 Environment & Language

Bret Victor’s essay “Learnable Programming”[4], written in response to an
implementation of some of the ideas demonstrated in “Inventing on Principle”,
outlines an excellent conceptual framework for the creation of programming
environments. Throughout this report I will use this framework as a point of
reference against which I will evaluate various existing systems (in section 3), as
well as my own creations.

In this essay, he outlines two key goals of a programming system:

15

• to support and encourage powerful ways of thinking
• to enable programmers to see and understand the execution of

their programs [4]

He also provides an important distinction, which he himself attributes to Will
Wright, creator of The Sims:

A programming system has two parts. The programming “environ-
ment” is the part that’s installed on the computer. The programming
“language” is the part that’s installed in the programmer’s head. [4]

Conceptually separating the environment (ie. editor, compiler, runtime. . .) and
the language (ie. grammar, “vocabulary” – programming constructs, abstractions,
libraries) is essential. Most programming systems in use today owe their weakness
to a misunderstanding of this distinction. Too often, programming language
design is guided by compiler implementation; editing is mostly seen as an
afterthought. Bringing this distinction to the center stage enables us to focus
our design task even further:

The environment should allow the learner to:

• read the vocabulary – what do these words mean?
• follow the flow – what happens when?
• see the state – what is the computer thinking?
• create by reacting – start somewhere, then sculpt
• create by abstracting – start concrete, then generalize

The language should provide:

• identity and metaphor – how can I relate the computer’s
world to my own?

• decomposition – how do I break down my thoughts into mind-
sized pieces?

• recomposition – how do I glue pieces together?
• readability – what do these words mean? [4]

Various systems have been more or less successful at performing these tasks.
By asking these particular questions, we are able to concretely evaluate and
compare systems. In particular, I will use this conceptual framework to evaluate
the success of this project, in section 7.

16

2.3 Human & Machine

In his book Interface, Branden Hookway provides a key insight into human-
computer interaction, namely that “. . . the interface is not only defined by but
also actively defines what is human and what is machine.” [14], p. 12

This insight is particularly visible in the historical development of program-
ming tools. Programming a computer was originally performed at a machine-
instruction level – the development of assemblers, compilers for higher-level
languages, as well as software verification tools, can be seen as a process of
passing to the machine tasks which were previously performed by humans.

This leads to another (certainly not original) defining principle which guides my
work, which is:

The programmer should never have to do anything the machine can
do for her.

2.4 Integrate with Existing Systems

In e-mail correspondence with Matthias Mueller-Prove, Alan Kay wrote the
following:

When Martin Luther was in jail and contemplating how to get the
Bible directly to the “end-users” he first thought about what it would
take to teach Latin to most Germans. Then he thought about the
problems of translating the Bible to German. Both were difficult
prospects: the latter because Germany was a collection of provinces
with regional dialects, and the dialects were mostly set up for village
transactions and court intrigues. Interestingly, Luther chose to “fix
up” German by restructuring it to be able to handle philosophical
and religious discourse. He reasoned that it would be easier to start
with something that was somewhat familiar to Germans who could
then be elevated, as opposed to starting with the very different and
unfamiliar form of Latin. (Not the least consideration here is that
Latin was seen as the language of those in power and with education,
and would partly seem unattainable to many e.g. farmers, etc.)
I think Martin Luther was one of the earliest great User Interface
designers – because he understood that you have to do much more
than provide function to get large numbers of people to get fluent.
You should always try to start with where the end-users are and then
help them grow and change. [20]

This struck me as an important concept, as it partially explains why we are still
stuck with what I consider inferior programming systems. Programming tools do

17

not exist in a vacuum; solutions to many aspects of programming already exists.
Many attempts at creating better programming environments try to rewrite the
programming experience “from the ground up”. This approach tends to discard
years of effort expended into improving (perhaps marginal, yet) meaningful
aspects of current programming systems.

Rather than trying to do everything at once, effective programming tools fit into
current environments and workflows, provide a meaningful improvement in (at
least) one area of use, and provide ways to “grow and change” with the end-user.

18

3 Prior Work

The development of better programming tools has been an endeavour which
predates computers themselves. Countless systems with the aim of improving
the programming experience exist in some form or another. In this section, my
aim is not to give a “complete” view of the programming environment design
space, but rather to highlight the projects which have had the most impact on
the development of my own programming environment.

As the old programmer’s quip goes, everything in computing was invented before
the seventies – since then, we have just been reinventing the wheel with better
hardware. This rings particularly true for programming environments. Indeed,
many of the ideas exhibited by the systems that follow trace their lineage to
some of the pioneering works in human-computer interactions from the sixties
and seventies.

Considerable progress has been made in the field in recent years, spurred on
particularly by a series of demonstrations, talks and essays by Bret Victor. Most
programming systems developed since then have taken a considerable amount
of inspiration from his ideas, so I will outline these further before examining
specific systems. I will then explore some rather “direct” implementations of
these ideas, moving on towards projects which aim to move programming away
from text.

3.1 Bret Victor – Inventing on Principle

In his talk “Inventing on Principle”[3], given at CUSEC 2012, Bret Victor
demonstrates a programming environment which embodies the aforementioned
principle of a creator having an “immediate connection” to what they are creating.
This programming environment consists of a code editor shown side-by-side with
the image output that the code produces.

Even this simple layout change is already a marked improvement. The pro-
grammer does not have to switch back and forth between different environments
(editor, compiler, output).

In this environment, the code and its result are tightly linked: any change in the
code immediately triggers a corresponding change in the outcome. Every change
is immediate, and the code and the image are always in sync. The programmer
is not aware of any “compilation” step, and does not have to “reload” or “run”
the code. Indeed, once such tight coupling is achieved, these terms become
meaningless within the context of the editor.

Reducing the “edit-compile-run” cycle to just a single “edit” action with imme-
diate feedback enables new ways of interacting with the code. Instead of merely
typing text, the programmer in this environment can use interactive components

19

Figure 1: Changing a number using a slider. Bret Victor - Inventing on Principle
04:30

to change the values immediately. For example, numbers can be edited using a
slider (see figure 1).

Most implementations of Victor’s ideas tend to focus on these specific interface
elements. Much more important is the kind of interaction that these interfaces
enable. Editing a number as text requires the programmer to choose a specific
value, while a slider is fuzzy—the programmer can rely on intuition to choose a
value that “looks right”. The programmer can now explore the effect of changing
any value, instantly.

Indeed, the essence of these ideas is that “so much of art – so much of creation –
is discovery. And you can’t discover anything if you can’t see what you’re doing.”
[05:25] More precisely, it is crucial that “I can make these changes as quickly as
I think of them. That is so important to the creative process: to be able to try
ideas as you think of them. If there’s any delay in that feedback loop between
thinking of something, and seeing it, and building on it, then there is this whole
world of ideas which will just never be.” [08:49]

However, the environment as he shows it deals with a single static image, with
no notion of state or time. At the time this talk was publicised, most of these
interactions were already possible in certain ways, for example using a “live
reload” plugin inside a browser, and laying out windows side-by-side. Since
the talk, countless tools implementing these ideas have been created – I will
explore some of these in detail. Notable implementations which I will not explore
in further detail include Apple’s Swift Playgrounds which are integrated into
Apple’s Xcode IDE[25], and the open-source Tributary environment[30].

20

Figure 2: Rewinding time. Note the slider in the top-left corner, which moves
backwards and forwards through time. 12:54

In my eyes, the most important contribution of this talk is the demo of a 2D
platform video game being created in the same editing environment. Again, the
game is shown alongside the code. He is now also able to interact with the game
itself, controlling the game character. He demonstrates changing some variables,
which affect certain aspects of the game, such as how high the player character
can jump, how fast the enemy character moves, etc. He is also able to pause
the game. When he does, a slider appears (see figure 2): it allows him to move
backwards and forwards through game time.1

Importantly, whenever he changes any of the values in the code, the resulting
changes are applied on top of the current state of the game. For example, he
can perform a “jump” in the game, rewind time using the time slider, increase
the jump height (ie. acceleration in the y axis), and move forward through time
using the slider: the game character will now jump higher.

This is already a vast improvement on the traditional edit-compile-run cycle:
the programmer is able to identify bugs exactly where they appear, can apply
necessary changes, and can test the changes immediately by stepping through
the state of the program. This approach is not limited to video games, as will
be explored in further sections.

However, this isn’t “immediate” enough: the programmer still has to manually
move backwards and forwards through time, change some values, and again move

1Interestingly, the artwork for this demo was created by David Hellman, who also created
the artwork for Braid[2], a 2D platform game which is based entirely on the concept of freely
being able to move backwards and forwards through time.

21

Figure 3: Mapping time to space, by leaving a trail. 13:53

backwards and forwards through time. The key insight to solve this is that “if
you have a process in time, and you want to see changes immediately, you have
to map time to space.” [13:37] In the case of video games and animations, this
can be done easily by leaving a trail caused by the movement of the character,
as shown in figure 3. Any change in the values affecting the movement are now
immediately visible to the programmer: the trail changes immediately as the
values are changed.
The talk contains a number of other demos which embody the principle of
giving creators a direct connection to their creations, but these are outside the
scope of this report. Instead, I will now focus on working systems which have
implemented these ideas.

3.2 Elm’s Time-Travelling Debugger and Elm Reactor

One of the most successful implementations of the ideas presented in “Inventing
on Principle” has been Elm’s time-travelling debugger[10], implemented by Laszlo
Pandy in February 2014. Elm’s programming model (as described in section
4) is perfectly suited to “time-travelling”. The entire state of the program is
contained in one single data structure, which is only ever updated via pure
functions. These functions are evaluated any time an external event occurs,
such as when the user presses a key. The time-travelling debugger saves the
values emitted by these events. When any of the functions in an Elm module
are changed by the programmer, the debugger applies this sequence of events to
the new module’s initial state. To go “back in time” then means only applying
the events which happened prior to a certain point in time.

22

He demonstrates this debugger by showing a simple 2D platform game, similar
to Bret Victor’s demo[5]. With this tool, the programmer is able to interact with
the program being debugged, and can pause and rewind time. The programmer
is also able to add “traces” to any moving elements in the program, such as
the game character in the game. This can be done by applying the function
Debug.trace : String -> Element -> Element to any value of type Element
in the program being debugged. (The String argument is simply a label used
to uniquely identify the trace.)

Figure 4: Elm’s time-travelling debugger. Note the traced path of the game
character in the bottom-left-hand corner, as well as the visualisation of the
program’s signal graph. 06:53

An important feature of Elm is its treatment of time-varying values, expanded on
in section 4.5. All values which change over time are contained in a single “signal
graph”. A notable feature of this debugger is its visualisation of the program’s
signal graph. As can be seen in figure 4, the data in the signal graph flows from
“leaf” nodes, which represent external inputs to the program, to a single node
labelled “main”. In this case, the leaf nodes represent the keys being pressed
(the numbers in the “input” nodes are the keycodes for the arrow keys and space
bar, respectively), as well as the dimensions of the browser window.
I feel that this feature perfectly embodies some of our design principles for
programming environments, namely enabling the programmer to see the state
and follow the flow.
The Elm Reactor [28], created by Michael James, is a slightly less ambitious
development on top of Laszlo Pandy’s time-travelling debugger, featuring a much
simpler UI.
The Elm Reactor integrates seamlessly with the existing Elm development

23

workflow: its functionality is exposed via a simple Elm library called Debug,
which exposes functions to “watch” and “trace” time-varying values in a program.
Importantly, these functions do not change the functionality of the code itself;
when invoked anywhere but the Elm Reactor, these functions do not have any
effect.

Elm Reactor renders the Elm program as usual, and additionally exposes a
control panel which displays the values being “watched”. Additionally, it exposes
a “pause” button, and a slider for moving forwards and backwards in time.

Elm Reactor demonstrates that a programming tool can be particularly effective
if it contains simple, specific functionality and integrates seamlessly with current
tools and workflows.

These tools have been some of the biggest influences in the development of my
own tool Arrowsmith, along with Light Table, created by Chris Granger.

3.3 Light Table

Light Table is an IDE for the Clojure programming language. Clojure is a
popular S-expression-based, ie. Lisp-like, functional programming language. S-
expressions are an interesting construct, because they make explicit the structure
of the program: they are a textual representation of the abstract syntax tree of
the program.

My analysis of Light Table will be limited to its original demo video, created
by Chris Granger[19]. Its actual implementation, which was open-sourced in
January 2014, implements a limited number of the features demonstrated in
this video. However, Light Table’s architecture has proven to make the editor
easily extendable, and many missing features have been implemented by the
open source community as plugins to the editor.

In the video, Granger states that “one of the guiding principles behind Light
Table is that documentation should be available wherever and whenever you
need it”. [19], 00:10 As such, it features a documentation view, shown beside
the code, which automatically shows the documentation of any function or value
underneath the cursor in the editing field (see figure 5). This view can also be
used to search for documentation for functions outside of the current file, via a
search box (figure 6).

However, one of the most interesting features of Light Table is the ability to
edit code as a “live document”. This feature has actually been implemented –
it is called InstaREPL in the released version, and is indeed very useful when
writing “real” Clojure code.

Once again, the view is split in two. On the left-hand side, the programmer can
edit code as usual. The right-hand side is more interesting: it also displays the
code, but any function argument is replaced by the actual value it was invoked

24

Figure 5: Automatic documentation view. Note that the editing cursor is
currently on the “keyword” name in the editing field on the left-hand side, and
the documentation for that function is shown at the same point on the right-hand
side. 00:13

Figure 6: Finding documentation with Light Table. 00:35

25

with (see figure 7). This enables the programmer to follow the flow of the values
through the code, as per one of our guiding principles.

Figure 7: Editing code as a “live document”. The function arguments (defined
on the left-hand side) have been replaced by their respective values (on the
right-hand side). 01:44

Another interesting concept demonstrated in the video is a way to “break away
from the notion that the smallest unit of code is a file. Instead, the smallest unit
of code is really a function.” 02.58

Instead of showing a single editor for an entire text file, Light Table shows a
separate text editor for each function (see figure 8). Positioning the cursor on a
function name within one of these editing fields opens up a new editor beside it,
containing the definition of that function.

Figure 8: A separate editor for each function. 03:08

This is in my view an amazing way to discover the code in a large codebase. In
order to make sense of a function, the programmer has to understand what each
of the definitions in that function mean. Many IDEs feature a “show definition”
function, but they tend to replace the entire editing view with the new file (this

26

is the default in Eclipse, IntelliJ, Xcode, etc.). By showing both the definition
and the context in which it is used, the programmer is not forced to mentally
switch between the two. Importantly, the definition is opened in a fully-fledged
editor – the programmer can change it immediately, as well as continuing to
explore “deeper in the call stack”. In the words of the “Learnable Programming”
framework, it allows the programmer to immediately read the vocabulary of the
program.

Programming environments for Lisp-like languages have the advantage that the
structure of the program is always explicit, since S-expressions simply represent
the tree structure of a program. This allows the programmer to easily and
accurately evaluate specific expressions. Clojure, like many Lisps, is dynamically
typed. The following project, Lamdu, is an exploration of the kinds of features
that are enabled by a powerful type system such as Haskell’s.

3.4 Lamdu

Lamdu[18] is an abstract syntax tree editor by Eyal Lotem for a dialect of the
Haskell programming language. It features many interesting ideas for editing
code. The main idea behind this editor is that “the canonical representation of
programs should not be text, but rich data structures: Abstract syntax trees”.

All editing in Lamdu is done on an abstract syntax tree level – Lamdu does not
allow the programmer to edit text (other than names, of course). This gives the
editor some impressive capabilities, but I argue that this has impeded its use as
a “real” programming environment.

As the textual representation of a program can not be edited, Lamdu completely
eliminates syntax errors. All changes produce a structurally valid program. This
is achieved by use of Haskell’s powerful type system, and a number of clever
user interface mechanisms.

I will attempt to explain the most important of these mechanisms by illustrating
the process of writing a simple Haskell-style fibonacci number function. Such a
function can be expressed neatly in Haskell:

fibs :: [Int]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

The programmer can only enter text in a “hole”. A hole is defined by the abstract
syntax tree of the program. Thus, entering text at the top level automatically
results in a function definition:

27

Pressing the = key results in the cursor jumping to the right hand side of the
definition, rather than a literal = character being inserted in the code.

When the programmer enters 1, Lamdu automatically infers a type of Int.

Continuing with the definition, the programmer enters :. The inferred type
immediately changes to List Int, and the cursor jumps to the next “hole”.

28

Since the editor can infer the type of the hole, it gives a number of useful
suggestions, all of which result in an expression of type List Int, such as
concatenation (++) or a range of numbers (..). Also notice that Lamdu has
automatically added parentheseses. Typing a function name constrains the
suggestions:

Notice that the suggestion is highlighted in red. This indicates that the type
of the suggested item does not fit the type of the hole. The type of zipWith
illustrates some of the differences between the language Lamdu operates on and
Haskell: All arguments are explicitly named, i.e. all functions take as argument
a single record containing the parameters. Thus, the language does not support
“currying”, ie. partial application (this concept is described in section 6.1.1).
Also, type variables are represented simply as type “holes”.

Entering fibs and tail fibs, as the two list arguments respectively, constrains
the hole to the required type of List Int. Lamdu suggests an anonymous
inner function (represented by the lambda) of the required type. The finished
definition looks like this:

29

Lamdu contains some excellent user interface ideas. The editor continuously
offers suggestions, which due to the powerful type system are highly relevant. In
most cases, very little text has to be entered – the top suggestions are in many
cases exactly what is required.

Type errors are also very intuitive in Lamdu. If a definition contains a type
mismatch, relevant nodes are highlighted in red, making it very easy to visually
discern the source of an error.

Since the editor works at an AST level, variables can be renamed at any point,
automatically updating all their occurrences.

It also features some interesting ideas regarding version control. Traditional
version control systems (VCS), such as git, work on line-by-line text diffs. This
makes it hard to track the actual evolution of a program: even a simple change
like renaming a single variable results in a number of disparate one-line changes.
It is very difficult to automatically infer the intent of a single change, thus
requiring manual annotation in the form of commit messages.

Lamdu automatically stores revision in a custom VCS which records tree diffs,
rather than text diffs. This highly reduces the risk of merge conflicts compared
to a traditional VCS. Also, it would be much easier to automatically generate
valuable commit messages, though I don’t know if this has been explored in
Lamdu.

The approach followed by Lamdu has some drawbacks however. It works with a
custom programming language which differs from Haskell in significant ways, as
outlined above. This immediately limits the usefulness of the editor, as existing
code can not be edited in it. It is also not clear where, and in what format, code
is saved. It appears that Lamdu programs have no simple textual representation,
which makes the choice of using Lamdu an “all-or-nothing” proposition.

Editing in Lamdu suffers from the limitations which seem to afflict most AST-
based editors: some changes in a program are extremely tedious to perform
without breaking the structure of the code temporarily. I will expand on this in
section 3.9.

That being said, the navigation through the AST is very well implemented.
Lamdu currently only supports keyboard input, though I believe that its current
UI would be well suited to a touch-based interface.

30

An even more ambitious approach for editing Haskell-like programs structurally
is Conal Elliot’s Tangible Values project.

3.5 Tangible Values

Conal Elliot’s work on Tangible Values explores very interesting ideas on the
representation of values in a pure functional environment. He defines Tangible
Values (TVs) as “visual and interactive manifestations of pure values, including
functions”[8].

A TV is a composition of a value and its GUI representation, i.e.
type TV a = (Output a, a). This value can also be a function.

(The following types are a slightly modified from Conal Elliot’s original formula-
tion of the system called “Eros”, and his documentation for the TV library on
the Haskell wiki[26].)

I will attempt to illustrate this system by adapting a simple example stated by
Conal Elliot. In order to convey the main concepts, I have simplified the datatypes
in the following example. In the TV library, these datatypes contain additional
information. The types stated here are closer to their original statement in the
Eros system from 2007.

The words :: String -> [String] function in Haskell splits a sentence into
a list of its constituent words, i.e.

words "The night Max wore his wolf suit" ==
["The","night","Max","wore","his","wolf","suit"]

The (nowadays) obvious user interface for a String value is a textbox. Functions
in TV are represented as inputs and outputs laid out vertically:

Figure 9: words function as TV

31

An interface of the shape shown above could be represented in the system as
follows:

gui :: Output (a -> b)
gui = oTitle "function: words" (oLambda (iTitle "sentence in" defaultIn)

(oTitle "words out" defaultOut))

The function oTitle :: String -> Output a -> Output a labels a given out-
put. Similarly, iTitle labels an input. oLambda :: Input a -> Output b -> Output (a -> b)
composes an input and an output, and arranges them vertically. The defaultIn
and defaultOut functions are defined as the “default” input/output for a given
type, viz. a textbox in the case of String.

Notice that the above definition only defines the shape of the UI. In particular,
it describes the UI for any single-argument function (a -> b), with added labels.
This is a key insight of the Tangible Values project: the type of a user interface
corresponds to the type of the value that is being represented by the user
interface.

This “generic” UI can then be composed with the actual function which imple-
ments the required behaviour on a value level:

tangibleWords :: TV (String -> [String])
tangibleWords = tv gui words

The tv :: Output a -> a -> TV a function turns the given Output (defined
as gui above), and the given value-level function (words in this case), into a
“Tangible Value”. This can then be run as a GUI program which splits any text
entered in the top textbox into its constituent words, which are displayed in the
bottom textbox.

Notice that this definition is independent of the actual UI mechanism being used.
In Conal Elliot’s implementation, he defines a UI monad which results in the
interface seen above. Additionally, he provides a command-line interface which
implements the same behaviour (through the built-in Haskell IO monad).

Tangible Values are composed by a process he calls “fusion”. In the Eros system,
a user can select compatible inputs and outputs, which are then “fused”: the
selected input-output pair disappears, and the remains are fused into a single
new TV.

Fusion is a remarkable interaction method: it is a very intuitive way to express
function application and composition.

In figure 10, the program consists of:

• a function which scales an image of a circle by a given real-numbered value
(represented by a “slider” Input)

32

• a constant value 1.0 (represented by a textbox Output)

The user selects both the input and the output, which are then fused into a
single image with scale 1.0.

Figure 10: TV fusion as function application

In the original implementation (from 2007), the user had to click on the inputs
& outputs separately. An obvious, improvement in today’s touchscreen-heavy
world would be a drag-and-drop touch interface.

Function composition works similarly: In figure 11, the constant “one” has been
replaced by a function which returns the square root of a given number input
(once again represented by a slider).

Fusing the output of the square-root function with the input of the scale function
results in a TV in which the scale of the circle corresponds to the square root of
the given input value.

Notice that the fused “square root” output and the “scale factor” input have
disappeared in the resulting TV. This is analogous to how the composition of
functions of type a -> b and b -> c is of type a -> c, hiding the “intermediary”
type b.

Tangible Values are in my mind an excellent user interface paradigm for repre-
senting functions. However, the composability of the UI components comes at a
price in complexity, particular at the type level. As all the values and functions
are encapsulated in the TV type, function application, composition etc. have to
be “lifted” to that type. Elliot achieves this by using a so-called “deep arrow”
abstraction of his own creation, which provides “deep function application”.[7]

33

Figure 11: TV fusion as function composition

I am not convinced that this composability is worth this added complexity. In line
with my principle of “the programmer should not have to do what the machine
can do for her”, this “lifting” would have to be done completely automatically
by the compiler in order for it to be acceptable for use. I’m of the opinion that
composition at a value level is sufficient, and that the rendering of the UI should
be kept as a completely separate stage.

3.6 “Blocks”-based graphical programming environments:
Scratch and Hopscotch

The idea of representing lines of code as “blocks”, which can be dragged, dropped
and rearranged interactively has been widely explored. This is conceptually
a very neat approach, since it makes clear the structure of the program. In
particular, this approach has been mainly used in educational systems designed
for children. Indeed it has not been proven so far whether these ideas can work
within the context of “professional” programming.

Scratch[21], developed at MIT, is arguably the best-known such system. The
Scratch programming environment features an easy-to-use 2D graphics engine,
in which image-based “sprites” can be manipulated using a “turtle graphics”
approach. Since it allows for the creation of highly interactive and visual games
and animations, it is often used as an introductory programming environment
for schoolchildren.

The Scratch programming language is event-driven and imperative: “stacks” of
blocks begin with an event (eg. when the green flag is clicked, as above), and

34

Figure 12: A simple Scratch program.

blocks that are “attached” below it are executed in sequence.

The programmer can choose from a pre-defined set of blocks, which have different
colours based on their category (“type”). For example, all operations related to
“motion” (of the sprite/turtle “pen”) are blue, control flow operations are yellow,
blocks that change the “Looks” are purple.

Control flow is represented in an interesting way: loops (such as the “repeat”
block in figure 12) add a second “connection point” at which blocks can be added.
The blocks inside the loop are then surrounded by the loop block itself.

While Scratch definitely brought this style of programming to the (educational)
masses, its core idea has been improved upon by some more modern projects,
most notably Hopscotch[15]. Hopscotch is an iPad app which allows children
to create games and animations similar to Scratch. It improves on Scratch by
its use of an intuitive touch interface: blocks can be dragged into place, and
complex scenes can be easily laid out.

Blocks are also coloured, and organised into categories. A complaint voiced by
one of my friends, an experienced programmer, is indicative of the weakness of
this kind of system for “real” programming: having to choose a block from a
categorised list is very tedious, especially if the programmer knows what they are
trying to achieve. Typing code is a much more direct form of editing a program.

3.7 Touch-based programming environments: TouchDe-
velop

An interesting attempt at creating a tool for “real” programming on touch-based
devices is Microsoft’s TouchDevelop[29], a graphical editor for a typed “scripty”
language which compiles to JavaScript. This is a web application which in theory
can be used on any device, although the user interface is clearly optimised for
tablets.

35

Editing is performed on a line-by-line basis: lines can be selected by tapping,
revealing a wide range of editing commands:

The TouchDevelop language features a type system, so the methods and
assignments featured in the highlighted buttons are always relevant to the
current line of code.

TouchDevelop nicely shows structural errors inline: it also features typed holes.

One very interesting feature of TouchDevelop is its different editing modes: The
“Beginner” mode features a Scratch-like blocks representation:

36

The “expert” mode reveals more of the structure of the code:

However, other than superficial differences, the modes do not change the editing
behaviour.

TouchDevelop also suffers from the problem that none of the written code can
be edited in other applications: the language is specific to the editor. However,
the written code can be deployed on many platforms, such as mobile phones
(using Apache’s Cordova APIs) and Microsoft’s Azure platform.

3.8 Notebook environments: IPython Notebook and Go-
rilla REPL

Notebook programming environments have had wide success in the scientific
community due to their ability to execute code fragments within the context of
a document which can contain explanatory text and images.

In notebook programming environments, fragments of code are embedded in a
document (the “notebook”), which can be edited interactively. From a program-
mer’s perspective, such environments can thus be seen as an interactive tool for
literate programming.

IPython Notebook[17] is probably the most widely used notebook environment.
The project’s website describes it as “a web-based interactive computational
environment where you can combine code execution, text, mathematics, plots
and rich media into a single document”.

IPython Notebook features strong integration with Python’s scientific program-
ming libraries SciPy and NumPy, and has impressive plotting and graphing

37

Figure 13: IPython Notebook

38

capabilities. As such, it is often used to illustrate scientific concepts with live ex-
ecutable code. Entire textbooks have been written in the environment, featuring
plots and figures which derive from real code and data, and exercises which can
be solved by writing Python code.

IPython Notebook also supports writing code in languages other than Python,
by defining a “backend” protocol for other programming languages to interact
with the notebook. Notably, the IHaskell[16] project is a Haskell backend for
IPython which features some interesting details, such as a IHaskellDisplay
typeclass, which allows the programmer to define custom rendering logic for
Haskell datatypes.

Another interesting project is Gorilla REPL[13], which is a notebook environment
for the Clojure programming language. Its user interface is similar to IPython
Notebook, but it features some interesting implementation details, particularly
its value renderer[12], which allows the programmer to specify custom rendering
functions for various types of data.

One of the key design features of Gorilla REPL is that it is “fundamentally
value-based”:

In Gorilla, plotting a graph, or showing a table isn’t a side-effect
of your code – it’s just a nice way of looking at the value your
code produces. You could say that Gorilla is fundamentally value-
based. Being strictly value-based like this a limitation, but it’s an
empowering limitation: it makes it possible to compose and aggregate
rendered objects just like you compose and aggregate Clojure values,
to save worksheets with their rendered output intact, and even to
manipulate the output of worksheets that you haven’t/can’t run. [12]

This is done by wrapping the value in a data structure which specifies a rendering
mechanism for that specific value. This echoes one of the key features of the
Tangible Values project, namely that the user interface is simply a consequence
of the specific values in a program. This has been a key inspiration for my
implementation of “Value Views”, detailed in section 6.3.3.

One of the biggest weaknesses of current notebook environments is that none of
the code written inside them can be reused easily. They are intended to replace
REPLs (“Read-Eval-Print-Loop”), which traditionally have been command-line
environments for writing exploratory “throwaway” code. (In fact, IPython Note-
book’s name-sake, IPython, is a widely-used command-line Python REPL.) As
such, they don’t allow the programmer to define modules and export definitions.
This limits their usefulness to programs which can be meaningfully expressed
within a single “module”. While these tools are well suited to exploratory coding,
I believe a programming environment in which values can be easily visualised
at any point can also be a useful tool for writing and debugging more complex
systems and library code.

39

3.9 Conclusion

What unites the above systems is that each provides a novel way of interacting
with a program that goes beyond simply editing text files. Some of these provide
small, incremental improvements, such as Elm Reactor, while some try to entirely
redefine the concept of programming, as displayed most forcefully in the Tangible
Values project.

An essential component of most of these systems is also that they try to minimise
the “feedback loop” betwen the programmer and the program being created.
This manifests itself in features which allow the programmer to instantly see the
effect of their changes, as well as having an insight into the state and data flow
of a program. Arguably the most successful project in this space has been Light
Table, whose “InstaREPL” is an extremely effective debugging tool. The flow
of a value through the program is visible at the level of every single expression
which “manipulates” a value.

Another effective insight demonstrated by Light Table (though hardly novel at
the time of its creation) is the idea that functions should act as the “unit of
editing”: every function should have its own editor, rather than simply being
part of a text file with multiple functions. This has been an essential element in
the design of Arrowsmith, which will be expanded upon in gory detail in the
rest of the report.

A key feature which seems to be universally understood by now is that errors
should be either instantly available to the programmer, or in some cases not
even possible at all. For example, editors which operate on the abstract syntax
tree of a program completely eliminate an entire class of programming errors:
the syntax error.

Conceptually, AST editors are very appealing: having to “mentally parse” text
into a (mental) abstract program structure, only to then have to “mentally
serialise” the newly manipulated program structure is an obvious deficiency
which must have crossed every serious programmer’s mind at some point in their
career.

However, at the current state of the art plain text is still the programming inter-
face with the highest “bandwidth”. We have at our disposal incredibly efficient
tools for manipulating text, and have developed a vast number of solutions to
make the structure of programs clear from their plain text representation, most
notably syntax highlighting.

Attempts to move away from editing text have largely been unsatisfactory. I
believe that this is largely due to the insistence on replacing text editing with
structural editing – a clear case of “throwing out the baby with the bathwater”. A
more successful approach, I argue, is instead to hide as much text as possible from
the programmer, and to only selectively expose text when necessary. Importantly,
the programmer should always be able to “fall back” to plain text editing if the
structural tools fail her.

40

As the above-mentioned structural editing tools have proven, this is likely to
happen: In terms of the transformations available to the programmer, any
interactive interface (such as a Scratch-like drag & drop interface) will always
be more restrictive than plain text. For example, say the programmer wants to
change the expression (1 + 2) * 3 to 1 + (2 * 3). This is a trivial change in
text, but most structural editors struggle with this, since the change completely
changes the structure of the expression. However, with these restrictions comes a
certain freedom: when manipulating programs through such an interface (eg. by
dragging blocks), the programmer can be certain that she has made no syntax
errors in the process.

An important concept to note is that interactive structural interfaces and plain
text code are merely different “views” of the same underlying structure: the
abstract syntax tree of the program.

The following representations can all correspond to the same abstract syntax
tree:

1 + 2 * 3

(+ 1 (* 2 3))

1 2 3 * +

Add 1 (Multiply 2 3)

Thus, in an ideal world we should be able to switch freely between any such
representations. In reality, a single textual representation is enough, namely
that prescribed by the syntax of our chosen programming language. In certain
cases, several useful interfaces might exist for editing a certain piece of code.
The programmer should be able to choose easily between any of these.

The most serious implication of replacing text with a purely structural editor
is that these editors tend to interact badly with other existing environments
and workflows. For example, none of the structural editing projects mentioned

41

exposes a human-readable textual form of the program. Scratch programs
manifest themselves as complex JSON files[23], Lamdu and Hopscotch provide
no access at all to programs outside the environments2, and TouchDevelop files
can at most be “reverse-engineered” from compiled JavaScript code – hardly a
sustainable editing workflow.

Practically speaking, programmers working in a team on a project written in
these environments is forced to use this exact editing environment. This is an
unlikely prospect, as professional programmers tend to have invested serious effort
into setting up their current editing environments, and tend to over-estimate
the “hit in productivity” that changing to a new environment entails.

Lamdu goes so far as to implement its own version control system to handle its
specific binary format. This approach disregards the many thousands of hours
of work that have gone into “real world” version control systems. The reality is
that the vast majority of programming work is eventually committed to either a
company-internal instance of git/mercurial/svn/etc. or to open source code
hosting sites such as GitHub or BitBucket. It is simply not possible to perform
“normal” programming workflows with current structural editing tools.

This is to me the most likely explanation for why these tools have all failed as
serious programming tools.

This project is an attempt at gathering together the “best of both worlds”
of structural editing and text editing: a tool which exposes the meaningful
structure of the code to the programmer, but which plays nicely with the rest of
the programming world. In particular, it should be possible to collaborate on a
project with programmers who use any other editor, whether it is emacs, vim,
ed or butterflies. The design and implementation of this project is detailed in
the following sections.

2Hopscotch at least has the excuse of being an iPad app, where users do not have access to
the file system.

42

4 Functional Reactive Programming with Elm

As noted in section 2.2, a programming system consists on an environment and
a language. Many programming editors exist which support multiple languages.
This limits their power to the “lowest common denominator” of language fea-
tures: apart from simple features such as syntax highlighting, most such editors
do not have any powerful features for programming other than efficient text
manipulation.

Limiting the editor to a single language allows the editor to fully leverage the
unique features of that language. This is what is meant when we speak of
integrated development environments, or IDEs. IDEs are able to provide editing
features which rely on the specific features of a single language.

Some of the most popular IDEs in use today are Eclipse and IntelliJ for Java,
Microsoft Visual Studio for C#, and Apple Xcode, for Objective-C. These IDEs
have features that are tailored specifically towards imperative, object-oriented
languages: they feature instant error detection, syntax-directed auto-completion,
and step-by-step debuggers, among many other things.

No comparable tools currently exist for functional programming languages.
Since such languages have an entirely different programming model to imperative
languages, many of the advanced features of current IDEs do not make sense
for such languages. In this section, I aim to outline some of the fundamental
properties of functional programming languages, and the consequences this has
for the development of programming tools. An understanding of these properties
is essential for appreciating the reasoning behind the ideas presented in the
following sections.

The programming language used for the code examples in this section is Elm[9].
Elm is a “functional reactive” programming language with a special emphasis on
creating user-interactive programs. Its basic features and type system resemble
Haskell, but its treatment of effectful code is very different from Haskell’s.
Readers familiar with Haskell may want to skip to section 4.5. The unique
properties of Elm’s programming model result in a way of structuring interactive
programs that will be unfamiliar to most.

4.1 Definitions: Immutable Values, Functions and Types

The most fundamental feature of a pure functional programming language is
that all values are immutable. This means that, once defined, values can never
be changed. This is in contrast to imperative programming languages, where
variables can be “destructively” updated: that is, variables can take on different
values at different points in time.

Take the following example program:

43

answer : Int
answer = 42

otherAnswer : Int
otherAnswer = 1337

funky : Bool
funky = True

greeting : String
greeting = "Hello!"

betterAnswer : Int
betterAnswer = max answer otherAnswer

max : Int -> Int -> Int
max first second =

if first > second then first else second

This program contains five definitions. For each definition, the first line is a type
declaration. The next line specifies the value.

The first two definitions are simple: we have simply given names to the integers
42 and 1337.

The next two definitions demonstrate further types: booleans and strings.

The last two definition of are more interesting:

betterAnswer is defined as the result of applying the max function to answer
and otherAnswer. (Note that unlike most programming languages, Elm does not
require parentheses around the arguments – max answer otherAnswer would
be written as max(answer, otherAnswer) in many other languages.)

The max function is defined below: it simply returns the maximum of two
numbers. Notice the type of max: Int -> Int -> Int. In function types, each
of the “argument types” are separated by an arrow. The last type is the “return
type”. Thus, this type can be interpreted as meaning “max takes two integers
and returns an integer”. An alternative, more accurate interpretation would be:
“max takes an integer, and returns a function, which takes an integer and returns
an integer”.

This is illustrated by the following definition:

overNineThousand : Int -> Int
overNineThousand = max 9000

44

This is an example of partial application: applying a single Int to a function
of type Int -> Int -> Int results in the type Int -> Int. This is equiva-
lent to writing overNineThousand x = max 9000 x, which makes it clear that
overNineThousand is indeed a function taking one argument. Since this is
already specified in the type, the argument name can be omitted.3

This already highlights an important consequence for the design of a useful pro-
gramming environment: types are essential to the understanding of a functional
program – indeed, in some cases the types reveal more about the intent of the
program than the code itself.

4.2 Evaluation: Purity and Referential Transparency

Notice that the above program “does” nothing – it is simply a list of definitions.
In order to get the program to perform the computations that we have specified,
we need to evaluate them.

The easiest way to do this is to use a tool called a REPL (“read-eval-print loop”).
This is simply an interactive command-line console which reads an expression
typed by the programmer, evaluates it, prints out the result to the screen, and
then lets the programmer type another expression (loop).

> answer
42

In this example, the programmer has typed answer and got the result 42, which
is what we defined in our program.

A more interesting example is betterAnswer. (Recall that we have defined this
as max answer otherAnswer). Typing this into the REPL gives us:

> betterAnswer
1337

In order to understand this result, let us evaluate this definition “by hand”. This
is a simple algebraic task: If we encounter a name we have defined, we replace it
by its right-hand side (RHS). We continue replacing names by their definition
until we have an expression composed of functions and values (steps 1-3). We
then apply the functions to the values until we are left with the final result (steps
4-6).4

3Omitting the names for arguments is sometimes called “point-free style”.
4Notice that the arguments to the function are evaluated before the function itself. This

is called “strict” evaluation. A language with “lazy” evaluation would evaluate the function
before evaluating the arguments. Elm features strict evaluation, while Haskell (for example)
features lazy evaluation.

45

betterAnswer
-- 1. RHS of `betterAnswer` -->
== max answer otherAnswer
-- 2. RHS of `answer`, RHS of `otherAnswer` -->
== max 42 1337
-- 3. RHS of `max` -->
== (\first second -> if first > second then first else second) 42 1337
-- 4. function application -->
== (\second -> if 42 > second then 42 else second) 1337
-- 5. function application -->
== if 42 > 1337 then 42 else 1337
-- 6. if-expression -->
== 1337

An important point to note is that each of these expressions are equivalent: the
programmer could type the expressions on any of these lines into a REPL, and
would receive the answer 1337.

The programmer can thus give a name to any expression, and replace all oc-
currences of that expression by its name, without changing the meaning of the
program. This is called referential transparency.

Referential transparency is enabled by the fact that functions are pure – a
function is guaranteed to always evaluate to the same value given the same
inputs – and that values are immutable – once defined, a value will never change.

The biggest implication of this for a programming environment is that it does
not matter when a definition is evaluated – since its value is guaranteed to always
be the same, the programmer can choose to evaluate any part of a program at
any time. This opens up some interesting possibilities for programming tools, as
described from section 5 onwards.

4.3 Collections and Higher-Order Functions: map, filter,
fold

In the previous section, we defined values and functions that operated on simple
types only. Any non-trivial program is likely to deal with collections of values.
The simplest such collection is a List. A list can be defined as follows:

excellentNumbers : List Int
excellentNumbers =

[42, 1337, 365, 24, 1993, 2015]

An important feature of Lists, and indeed any collection in Elm, is that each
element in the list has to be of the same type (in this case, Int).

46

In an imperative language, performing operations on the elements of a collection
is done with constructs such as the for-loop. This construct does not exist in
functional programming – instead, processing of collections is usually performed
with higher-order functions. A higher-order function is any function which takes
another function as an argument. I will detail the most common higher-order
functions used for collections, as knowledge of these is essential for understanding
Elm’s treatment of time-varying values.
The easiest higher-order function is called map. It takes any single-argument
function and a list, and returns a list with the function applied to each of the
elements individually.

map : (a -> b) -> List a -> List b

All the previous types we have introduced were concrete types – they are written
Capitalised (Int, String, etc.). This type definition contains type variables,
written lower-case (a and b). A type variable can be filled with any concrete
type. A single type variable can however only be filled with a single type. We
will illustrate this with an example.
Our definition excellentNumbers has the type List Int. Let’s say we want
to transform each of these numbers to a string, for example for displaying
the number on screen. This can be done using the function toString : a ->
String. This converts any value (a) to a String.
Typing the following into a REPL gives us a list, with each of the values now
converted to strings:

> map toString excellentNumbers
["42", "1337", "365", "24", "1993", "2015"]

The type of this expression is List String – the type variable a is now con-
strained to Int, and the type variable b is constrained to String.
Partial application is very useful in conjunction with higher-order functions. Take
for example the function always : a -> b -> a, which given two arguments
always returns the first argument5.
In the following example we partially apply this function, giving us a list of
strings, all containing “hello”. We can also partially apply arithmetic operations:
the expression (+ 2) has the type Int -> Int, so mapping this over a List
Int gives us a List Int.

> map (always "hello") excellentNumbers
["hello", "hello", "hello", "hello", "hello", "hello"]
> map (+ 2) excellentNumbers
[44, 1339, 367, 26, 1995, 2017]

5You may recognise this as const from Haskell, or K if you’re a skier.

47

Notice that the resulting list always has the same number of elements as the
input list.

Another very common higher-order function for collections is filter. This
allows us to select certain elements from a collection.

filter : (a -> Bool) -> List a -> List a

filter takes a function returning a Bool (a “predicate”), and a list, and returns
a list of the same type.

For example, if we define the function even : Int -> Bool, we get a list of just
the even numbers:

> filter even excellentNumbers
[42, 24]

A slightly more complex higher-order function is fold (also called reduce in
some languages)6.

foldl : (a -> b -> b) -> b -> List a -> b

This allows us to combine the values from a collection into a single value. It
takes a function with two arguments (a “reducer”), an initial value, and a list.
For each element of the list, the result is built up by evaluating the “reducer”
function with the value emitted by folding the previous elements of the list.

For example, to sum all the elements of a list, we fold + : Int -> Int -> Int
over the list:

> foldl (+) 0 excellentNumbers
5776

In the following example, we turn each number in the list into a string, and then
concatenate the resulting strings with the string “numbers:”. (++ : String ->
String -> String is the concatenation operator.)

> foldl (++) "numbers: " (map toString excellentNumbers)
"numbers: 4213373652419932015"

These three higher-order functions are immensely powerful – nearly all operations
on collections can be expressed using using these. We will explore some editing
interactions that are enabled by these functions in section 5.

6The function shown in the example, foldl specifies a left fold, which consumes a list from
beginning to end. The right fold function is called foldr, and has the same type in Elm.

48

4.4 Structured Values: Tuples, Records and Sum Types

In addition to simple values and collections, Elm also features structured
datatypes. These allow grouping related values into a single combined value.

Tuples are the simplest structured value: they are simply a grouping of related
values. Examples of tuples:

(2, 4) : (Int, Int)
("hello!", True, 42) : (String, Bool, Int)

Notice that, as opposed to a list, the element types can be different, and that a
tuple always has a fixed size.

Records are essentially tuples with named fields, and are similar to objects in
object-oriented programming.

Records can be defined as follows:

dublin = {
name = "Dublin",
country = "Ireland",
population = 1110627,
capital = True

}

Fields in a record can be updated as follows:

asGaeilge =
{ dublin | name <- "Baile Átha Cliath", country <- "Éire" }

Note that since all values are immutable, the values in the original definition
remain unchanged.

Record fields can be accessed using the convenient notation familiar from object-
oriented programming:

> dublin.country
"Ireland"

Combining this notation with higher-order functions is very expressive:

> map .name [dublin, asGaeilge]
["Dublin", "Baile Átha Cliath"]

49

The type of the record looks very similar to the record itself:

city : { name : String, country : String, population : Int, capital : Bool }

For big records, this can quickly get unwieldy – we can thus define a type alias:

type alias City = {
name : String,
country : String,
population : Int,
capital : Bool

}

Another very important datatype is a sum type. This is used to represent a value
that can be one of several types. Sum types are similar to unions in C/C++
and enums in Java.7

For example, we can define the following types:

type ReportState = Writing | Procrastinating
type Bool = True | False

Just as a boolean value can only be True or False, but never both at the same
time, the ReportState can only either be Writing or Procrastinating.

Sum types can also hold data:

type Contact = Email String | PhoneNumber Int
type Maybe a = Nothing | Just a

Notice the type variable a: Maybe can hold any type. For example, the expression
Just "Harry" has type Maybe String.

Sum types can also be recursive. Thus we can represent more complex datas-
tructures such as trees:

type Tree a
= Leaf a
| Branch (Tree a) (Tree a)

Sum types are usually dealt with in code by using the case statement:
7Strictly speaking, sum types are more general than Java enums, since every choice can

hold arbitrary data – in Java, every enum field holds the same type of data.

50

encouragement : ReportState -> String
encouragement state =

case state of
Writing -> "Good job!"
Procrastinating -> "Keep writing!"

Records and sum types are widely used in any non-trivial Elm program, particu-
larly when creating interactive applications: in most Elm applications, they are
used to represent the possible actions that the user can perform.

4.5 Dealing with Time: Functional Reactive Program-
ming

Elm belongs to a class of functional programming languages called functional
reactive programming languages. Functional reactive programming languages
can be seen as the subset of functional programming languages which contain
an abstraction for time-varying values.

In Elm, values that change over time are referred to as Signals. For example,
the position of the mouse on the screen is given the following name in Elm:

Mouse.position : Signal (Int, Int)

According to its type, Mouse.position is thus a pair of coordinates ((Int,
Int)) that change over time (Signal). Rather than referring to the mouse
position at a specific point in time, this value refers to all mouse positions that
the program encounters during its runtime.

A really useful way to think about time-varying values in a functional reactive
language is that time is just another collection: one can map, filter and fold
time-varying values in the same way that one can perform these operations on a
list.

The type signature of map for signals looks like this:

map : (a -> b) -> Signal a -> Signal b

Recall that map transforms every value in a collection. Similarly, you can
transform every value over time: the signal screenSides defined below updates
every time the mouse position updates, and tells us whether the mouse is on the
left side or the right side of the screen at any point in time.

type Side = Left | Right

side : (Int, Int) -> Side

51

side (x, y) =
if x < 500 then Left else Right

screenSides : Signal Side
screenSides =

map side Mouse.position

Notice that the function side is a pure function: it takes a single screen position
and returns a Side, which we defined just above.

We can also create past-dependent signals using foldp. Its type is similar to
foldl for lists.

foldp : (a -> state -> state) -> state -> Signal a -> Signal state

The name given to the type variable state in the official Elm documentation
hints at the purpose of foldp: In fact, foldp is the only way to maintain state
in an Elm program.

In the following example, the signal clickCount updates every time the mouse
is clicked. The value of the signal at any given time is the total number of clicks
that have occurred since the start of the program.

clickCount : Signal Int
clickCount =

foldp (\click total -> total + 1) 0 Mouse.clicks

4.6 Putting It All Together: The Elm Architecture

All of the previously mentioned features combine into a neat structure for creating
interactive applications in Elm. The architecture documented here is taken from
a document called “The Elm Architecture”[27], written by the creator of Elm,
Evan Czaplicki.

I will illustrate the architecture by developing a simple “counter” application.
This application displays a “count”, and lets the user increment or decrement
the count using buttons.

An Elm program can be cleanly divided into three separate parts: model, update
and view.

A value of type Model specifies the state of the program at one specific point in
time. It is usually defined as a simple record.

For our simple “counter” application, we define a record which contains one field:
the integer count. We also specify the initial model: this is the program state
at the start of the program.

52

type alias Model =
{ count : Int }

initialModel : Model
initialModel =

{ count = 0 }

The update part of the architecture is composed of three things:

• a sum type Action which specifies the possible actions available,
• an update function, which applies a certain update to the model, and
• a “mailbox” called actions.

In our application, we have two possible actions: incrementing or decrementing
the counter. We also add an action type which represents “doing nothing”, NoOp.
In the update function, we perform a case analysis on a single action: if the
action is Increment, we add 1 to the count field of the model, and similarly for
Decrement. In case of a NoOp, the model is returned unchanged.

A “mailbox” consists of of an address and a signal. Actions can be “sent to” a
mailbox’s address. The mailbox’s signal contains all the actions that have been
received by the mailbox. This will used in the view function to handle user
input: clicking on a button results in a message with a specific action being sent
to the mailbox’s address.

type Action =
NoOp | Increment | Decrement

update : Action -> Model -> Model
update action model =

case action of
NoOp ->

model
Increment ->

{ model | count <- model.count + 1 }
Decrement ->

{ model | count <- model.count - 1 }

actions : Mailbox Action
actions =

Signal.mailbox NoOp

The view is a function which transforms a specific model into an Element.

Element is Elm’s type for creating graphics. Elm features a simple API for
laying out user interface components on the screen: here we simply state that

53

we want to display the count, a “+” button, and a “-” button right beside one
another.

view : Model -> Element
view model =

flow right [
show model.count,
button (Signal.message actions.address Increment) "+",
button (Signal.message actions.address Decrement) "-"

]

Notice the first arguments to both of the button functions: these specify the
Action being sent to the actions mailbox. Clicking the button labelled “+”
results in an Increment action, and similarly for the button labelled “-”.

The crucial step for putting these parts together lies in the model definition:

model : Signal Model
model =

Signal.foldp update initialModel actions.signal

This definition specifies the model at all possible points in the duration of the
program. Recall the definition of foldp:

• the initial value of the model is initialModel.
• Any time an action is sent to the mailbox (by clicking a button), the

actions signal updates.
• When the signal updates, the update function is called with the previous

state, and the current action.

The final part of the puzzle is our application’s entry point, main: Any time the
model changes, we call the view function which renders an Element based on
the current model. We can achieve this by mapping the view function over the
model signal:

main : Signal Element
main =

Signal.map view model

The Elm runtime renders the resulting Element on screen.

The end result is not beautiful, but it works: the user can click each of the
buttons, and the counter changes correspondingly, see figure 14.

This way of structuring interactive programs is quite extraordinary. The entire
application state is expressed as a stream of pure functions acting on immutable

54

Figure 14: The “counter” application created using the Elm Architecture

data. The view is simply a pure function which renders a single static view. The
only “impure” definition in the entire program is the “mailbox”: all possible user
actions are contained in this one single definition, and the rest of the program
updates in response to its single signal of actions.

It is this architecture which enables the “time travelling” demonstrated by Laszlo
Pandy in section 3.2. In his “time-travelling debugger”, he saves the contents of
the actions signal. When any of the code changes, he simply “replays” these
saved actions. Since all other definitions are pure functions acting on immutable
state, he is guaranteed not to overwrite or corrupt any previous states of the
program.

This programming model enables some truly novel ways of developing and
debugging programs. In the following section, I aim to outline some user
interface ideas which leverage some of Elm’s unique features.

55

5 Design

Using Elm’s unique programming model as inspiration, I created several user
interface prototypes which aim to embody some of the principles outlined in
section 2. Most importantly, my aim is to create interactions which give the
programmer an immediate connection to the program being developed, as well
as ensuring that the programmer is not forced to doing anything the machine
could do for her.
I will first detail individual components, and will then go on to show how
these components working together can enable new ways of programming in a
functional programming language such as Elm. For each component, I will map
out what can be gained by moving away from plain text, as well as taking a look
at the drawbacks of these interfaces.

5.1 Types

One of the main features of Elm (and Haskell) which has not been explored to its
full potential from a user interface perspective is its powerful type system. Types
are one of the most powerful tools for understanding an unknown program. In-
deed, alongside names and documentation, they are the only form of specification
which is guaranteed to be up to date with the implementation. Documentation
is notoriously either non-existent or outdated, and this is a problem that only
a rigourous software development process can solve. With types, this rigour is
enforced at compile-time.
Syntax highlighting has proved to be one of the most useful tools for reducing the
cognitive load of editing text on the programmer. The programmer can instantly
see whether keywords are spelt correctly, or that she is using the correct syntax.
By colour-coding types, we can help the programmer further: at an immediate
glance, the programmer knows the type of each definition, and is able to visually
discern which definitions and values might be related.

Figure 15: Colour-coded simple value types. (Note that in Elm, String is an
opaque type as opposed to a list of Chars, as in Haskell.)

Concrete value types can be represented quite simply: each concrete type is
assigned a colour (figure 15). I will refer to these colour-coded components as a
type tags, or simply tags.

56

Figure 16: Parameterised types.

This is quite obvious; more interesting are parameterised types. These are used
to create “generic” datatypes. The most common usecase for these in Elm is for
collections, as well as for time-varying values (Signal). In the case of collections,
the type parameter specifies the element type. Multiple type parameters are
possible: Dict, a key-value map, has two parameter types – a type for the key,
and one for the value. The way these are represented is by colour-coding the
collection type with one colour, and showing the colour-coded parameter type
as a “cell” inside the type tag, as can be seen in figure 16.

Function types are textually represented as “arrows” between two types, for
example String -> Bool. This can be represented quite naturally by placing
the tags beside one another, as seen in figure 17.

Notice that this representation is also suitable for displaying nested function types,
for higher-order functions. For example, the last type in figure 17 corresponds to
(a -> Bool) -> a -> Signal a -> Signal a (the type for Signal.filter).
The first argument in this type is a function, and is represented as a “cell” inside
a grey tag.

5.2 Definitions: Functions & Values

In the functional programming paradigm, values can be seen as functions with
no arguments. It is thus useful to speak of “definitions”: these can be either
function definitions, or constant values, or values which are the result of certain
function applications.

One of the most compelling aspects of Chris Granger’s Light Table demo is the
idea that we should be editing programs at the level of functions, rather than
files. In the demo, this is achieved by allowing the programmer to navigate
directly to a function in a given file, and opening an “editing bubble” containing
only that function. This “editing bubble” contains a traditional code editor –
the programmer is able to edit text as expected. I like this approach because it
focuses the editing task on a “mind-sized” piece of the code: a single function.

Taking advantage of Elm’s powerful type system, we can enhance this idea (figure
18). Every function has its own editing field, as in Light Table. The type of
each definition is displayed in the editing field. This editing field can also be
hidden, by tapping (or clicking) on the name of the definition. This allows the

57

Figure 17: Function types.

programmer to hide code which is irrelevant to the current task at hand. An
empty editing field is shown below the definitions, which allows the programmer
to enter new code.

5.3 Function Composition via Drag & Drop

Imagine the programmer now wants to test her clock function in the example
shown in figure 18. Note that clock has a type of Float -> Element, and
she has previously defined a value of type Float, namely goodTime. Thus she
could simply apply the value to the function to receive a value of type Element.
Instead of typing this expression, she should be able to just drag the value onto
the function, or vice-versa, drag the function onto the value (figure 19.

When she starts dragging the value, the editor gives her visual feedback as
to where she can drop the value by changing the colours of the types: All
incompatible types are shown in grey, while compatible types maintain their
colour.

The editor infers a relevant name for the resulting expression, which the pro-
grammer can obviously change immediately.

This interaction by itself is not very interesting; applying simple values to
functions is a trivial task, which is just as easily performed by typing the relevant
expression. However, we can extend this interaction to also support collections.

In figure 20, the programmer has a value of type List Float, and drags it onto

58

Figure 18: A separate editor per definition. The type of each definition is shown
alongside the code. The goodTime definition is collapsed. An empty editing field
allows the programmer to enter more code.

59

Figure 19: Function composition via drag & drop. The position of the fin-
ger/pointer is shown as a white dot. The programmer is dragging along the
path outlined by the red arrow. The resulting UI change, with a newly-created
definition, is shown on the right.

Figure 20: Mapping over a list via drag & drop.

60

the function clock : Float -> Element. The obvious interpretation of this
is that she wants to apply the function clock to each of the elements in the
list. This can be achieved with the map function. The resulting code is thus
List.map clock goodTimes.

This is quite powerful, as this can also used on Signals, ie. time-varying values,
as well as any other collection which implements map. A common programming
workflow in Elm is to create a view for a single constant state, and to then map
the view function over a dynamic state which changes over time based on user
input.

5.4 Evaluating Definitions

In the previous section, we only focused on editing code. However, in order to
have a truly “immediate connection” to the program, the programmer should
be able to evaluate any parts of the program instantly. This is where Elm’s
programming model shines: because all definitions are pure, any part of the
program can be evaluated at any point without affecting the rest of the program.

This is exposed very simply to the programmer: we add a “play” button to any
definition that can be evaluated, as in figure 21. Tapping/clicking on this button
shows the evaluated value directly underneath the definition.

Figure 21: Evaluating definitions using a “play” button. The evaluated value is
displayed underneath the definition.

For most types, this value will be displayed using a simple string representation.
Some types have more useful representations, as shown in figure 22: Elements,
which are Elm’s basic type for rendering graphics, can simply be rendered in
the value field. Colors can be displayed as a coloured rectangle. Signals can
simply display their current value.

As presented so far, these components are non-interactive: they are simply a
way to make values more immediate to the programmer. Our approach can be
extended to allow interaction with these values.

61

Figure 22: Rendering values of type Element and Color inline. Both definitions
are collapsed. The element displayed for main changes every second.

62

5.5 Interactive Editing

Since we now have a separate editor for each definition, we can now selectively
change the editing experience for definitions of a certain type.

Figure 23: A record type declaration, as well as an interactive interface for
editing a list of records.

Figure 23 features two examples of interactive interfaces: the first is a view
for record type definitions, the second is a view for lists of records. The list of
records is laid out like a spreadsheet: each element in the list is in a separate
column, and every field within each element is on a separate row.
Each of these views is interactive: tapping/clicking on any of the fields allows
the programmer to edit the value inside the field directly. The programmer can
add new fields or list elements using the buttons labelled “+”, shown for each
definition.
Notice that each of these definitions now contains an extra button beside the
“play” button: this enables the programmer to edit the value as text, if she feels
that the interactive interface is obstructing her, rather than helping her.
The “spreadsheet” view enables further drag & drop interactions: The program-
mer can now project a field from a list of records by simply dragging the row

63

label into “empty space”. In the example in figure 24, the programmer drags
the population field from the cities list. The resulting code is List.map
.population cities.8

Figure 24: Projecting a field from a list of records by dragging the row label.

Such a component is likely to be only useful in particular circumstances. Notice
that combining a strong type-system with the idea that every value has an entirely
separate editor enables us to create highly context-specific editing interfaces.
Since the programmer can always fall back to editing plain text, these components
do not restrict the power of the editor. The editor should feature a mechanism
for programmers to create their own components for interacting with values –
many types of values have highly specific representations, and most will only
make sense within a particular project.

8Recall that in Elm, record fields can be accessed using the notation recordValue.field.
.population in this example is merely syntax sugar for the expression \x -> x.population.

64

5.6 Errors

In the process of writing a program, the programmer will certainly encounter
many errors. Elm is designed so that the vast majority of programming errors
can be detected at compile-time, rather than at runtime. Errors should be
immediately visible to the programmer as soon as the error is made. In particular,
errors should be visible as close to the source of the error as possible.

From a UI perspective, the simplest errors to show the programmer are mis-
spellings. When editing text, these are frequent, but easy-to-fix errors. These
kinds of errors occur at a single, well-defined point in the source code. The error
message can thus be attached to the incorrect definition, and the misspelling
itself can be highlighted in the code, as in figure 25. The error message shown
in this example is an error message generated by the Elm compiler. The Elm
compiler also outputs line and column numbers with such an error. Since the
programmer is not editing an entire file, line numbers are meaningless inside this
editing environment, and are thus not shown to the programmer.

Figure 25: A misspelt variable name in the code can be easily displayed to
the user. The error is attached to the definition, and the location of the error
is highlighted in the code. Additional visual feedback is given by replacing the
“play” button by an “error” button.

Related to misspellings are syntax errors, which result in parsing failures. These
are more difficult to recover from, since a parse error is likely to only manifest
itself at the point of the next token. The reported location of the error might
thus be far from the source of the actual error. An extreme yet effective way to
let the programmer fix these kinds of errors is to simply display a single editor
for the entire file, such as in a traditional code editor. The error can then be
highlighted inside the text editor, as is common in most IDEs.

A more interesting class of errors are type errors. For an experienced programmer
who is familiar with the syntax of the programming language, this is by far
the most common source of errors. In fact, type errors are an essential tool for
efficiently refactoring a large codebase. A common editing workflow in Elm or

65

Haskell is to change a datatype or function type, and then fix every point in the
program at which a type error occurs as a result.

An important insight is that type errors always have at least two sources: A type
error is a mismatch between the expected type of an expression and its actual
type. However, the type that the compiler expects might not always be the type
that the programmer wants.

Indeed, we can discern between two methods of implementing a program: When
programming in a “top-down”, “wishful”[33], or “type-driven” manner, the
programmer writes high-level functions and datatypes first, and then writes the
underlying implementations of these functions, guided by the type system. One
could say that the programmer defines expected types, and proceeds by fitting
the actual types to the expected types. Programming in a “bottom-up”, or
“implementation-driven” manner is the opposite: the programmer implements
specific functions and then composes them afterwards – composing actual types
until the expected type matches the “correct” type. In the process of writing
any non-trivial program, the programmer is likely to move in both “directions”
at some point. Thus, the editing environment should make no assumptions as
to which type is “correct” – the programmer should be able to choose how to
resolve a type error in either way.

5.7 Conclusion

Instead of detailing an entire programming system, I have chosen to focus
on selected components and interactions. The most important idea is that
programming should happen on a per-definition basis rather than a per-file
basis. Considering each definition independently enables a number of powerful
interactions: we can now interactively compose functions and values, for example
via drag & drop; we can instantly evaluate any definition in place; we can choose
more powerful representations for certain values; and we can create context-
dependent interactive interfaces for certain values, while still being able to edit
them as text.

Most of these interactions also rely on Elm’s powerful type system. By colour-
coding types, we are able to give instant visual feedback as to which functions
and values are related, and can be composed. We can let the programmer hide
the implementations of definitions, since the name and type are in many cases
sufficient for understanding a definition.

I explored some type-specific interfaces, such as the “spreadsheet” view detailed
in section 5.5. While these are certainly great visual aids for understanding
certain kinds of data, it remains to be seen whether these kinds of interfaces are
useful in many cases. I believe that it is important for programmers to be able
to develop their own interactive views in such a system. The “killer app” for
such an interface is much more likely to be found by an exploring community
than by a concerted design effort.

66

The interactions shown in this section are only mockups – they were implemented
in a web browser using static data. These went through many iterations before
converging on the interactions shown. Easily-modifiable, high-fidelity mockups
proved to be an essential tool for developing these interactions. Since the
main goal of this project is to develop a working system, I will now detail the
development process of this system, which I have dubbed Arrowsmith.

67

6 Arrowsmith

Arrowsmith is an attempt to create a programming system which tries to embody
the following principles:

• the programmer should have an immediate connection to the program she
is developing

• the programmer should never have to do anything the machine can do for
her

• the system should integrate with currently existing tools and environments

These are the principles I first stated in section 2.

As previous projects have shown, the design space for programming environments
is large. The temptation is to start from a “clean slate”: to develop an entirely
new programming language which perfectly supports the features being aimed at.
I wanted to avoid creating a new language, and instead tried to find a language
with an already existing environment most suited to creating this new editing
experience.

Many of the interactions I ended up exploring as part of the design process are
quite specific to Elm. However, before settling on Elm, I explored some other
languages & environments.

As mentioned previously, the two key language features which allow us to create
the editing interactions explored in section 5 are purity and a strong type system.
The obvious choice of language with these features is Haskell.

Haskell was the first functional programming language I had any experience
with, and the initial drive for many of the ideas shown here has come from
my experience of using Haskell in the introductory programming course at
Imperial College London. A big issue with Haskell as a “learnable system” is
that performing any non-trivial task with it requires understanding of the IO
monad, an incredibly powerful abstraction which allows writing effectful code in
Haskell.

As well as being an impediment to beginners, use of IO also renders a Haskell
program impure: our assumption that we can evaluate anything at any time
would no longer be true. One solution would be to limit the programmer to
a subset of Haskell without IO. This is a serious limitation: for example, it is
impossible to render graphics in Haskell without the use of IO. For a system
which aims to “move beyond text”, this is quite a damning limitation. Haskell is
thus not an ideal choice as an editing language.

I briefly explored some other Haskell derivatives, notably PureScript[22]. Pure-
Script is a language which compiles to JavaScript and thus runs inside a web
browser. PureScript improves on Haskell’s treatment of IO with its “effect
monad”: this allows the programmer to specify the particular effects that a

68

monadic action will have. However, again, this requires an understanding of
monads to do anything “useful”.

Elm instead manages to contain effectful computation in a neat abstraction of
time-varying signals. This is a much more limited abstraction, but one that is
far easier to understand once the programmer is familiar with basic functional
programming concepts.

Apart from its much simpler model for programming, Elm also has an active
and enthusiastic community. The efforts from this community have already
resulted in groundbreaking new tools for debugging, such as the “time-travelling
debugger” by Laszlo Pandy, detailed in section 3.2.

In the following section I will detail Arrowsmith’s user interface, and will then
go onto describing the project’s implementation. I found that Elm’s compiler
did not easily support some of the features I required. I will detail the necessary
changes I had to make to Elm’s compiler and build system, as well as some of
the limitations of the approach I have chosen.

6.1 User interface

Arrowsmith is a web application which runs in any modern browser.

Integrating with current development systems is one of the key goals stated in
section 2. One of the systems that developers nowadays interact most with is
GitHub, the code hosting site based on the git version control system. Arrowsmith
loads Elm projects directly from GitHub repositories – the user simply has to
type in their project’s username/projectname combination into their browser’s
URL field.

The most important user interface element in the editor is the module view,
which is responsible for displaying a single Elm module. It consists of different
components for definitions, imports and type definitions.

The module view is structurally similar to the textual representation of the
module. Since we are not constrained to plain text, we are able to display useful
interactive components for each part of the module. I will describe each of these
components in detail.

6.1.1 Definitions

By far the most important component of the module view is the definitions view.
The majority of the programmer’s interaction with the editor is performed here.

Each definition is given a separate editing field, as was demonstrated in section
5. An example of such an editing field is shown in figure 27. Each editing field
shows the definition’s name and type, as well as the code corresponding to the
definition.

69

Figure 26: An example “Clock” module being edited in Arrowsmith.

70

Figure 27: A single definition in arrowsmith.

The type shown in figure 27 is shown in blue: this means that the type was
specified in the code. If the type was not specified, the definition’s inferred type
is shown instead. This is already an improvement over plain text: since each
function has a separate editor, we can show function-specific information to the
user without having to manipulate the underlying code. In section 5.1, I outlined
several ideas for colour-coding types. I unfortunately failed to get this to work
satisfactorily, for reasons I will outline in section 6.5.

The biggest innovation here is that each definition has a “play” button, which al-
lows the programmer to evaluate the definition in question. After tapping/clicking
on this button, the value is shown below the definition.

If the value in question is of type Element, it is simply rendered, as shown in
figure 28.

Values which have a meaningful representation other than text are displayed
using custom renderers. Currently, Colors, Lists and Dicts have simple special
representations, as shown in figure 29. Values of type Signal Float, ie. time-
varying numbers are plotted over time, as shown in figure 30. The plot updates
automatically as the value changes. All other values are simply rendered using
the built-in show function.

Tapping on a definition allows the programmer to change the code by simply
editing text. When the programmer taps anywhere else, the resulting code is
compiled and parsed, and the programmer instantly sees the new type of the
definition, if it changed. If the programmer previously evaluated the definition, it
is evaluated again, and the changed value is instantly shown to the programmer.
If any other value depends on the definition that was changed, its value is also
re-evaluated, and updated without programmer intervention. This enables an
immediate connection to the code: the programmer instantly sees the effect of
any changes to the code.

If the programmer makes an error when editing a definition, she gets immediate
visual feedback: the background of the definitions view turns red, and the error
is displayed at the top of the definitions view, as shown in 31.

71

Figure 28: Pressing the “play” button evaluates a definition and displays the
result below the definition. In this case, the definition is of type Element, so the
element is simply rendered inline.

72

Figure 29: Special representations for certain kinds of values: Values of type
Color are shown as a coloured rectangle, Lists and Dicts display separate “tags”
for each element in the collection.

73

Figure 30: Values of type Signal Float can be plotted over time. The plot
updates automatically with the latest values.

6.1.2 Imports

Any non-trivial module will contain a list of imports. The imports view is
hidden by default from the programmer, since the list of imports is rarely useful
while programming. It can be shown by clicking the button labelled “i” in the
bar below the module header, as shown in figure 32. This is currently quite
simple, showing the imports as they are written in the program. Structurally,
an import is composed of three things: a module name, an optional alias, and
an optional list of exposed definitions. Tapping/clicking on an import reveals
separate textfields for each of these components. This approach eliminates the
possibility of syntax errors in the imports.

6.1.3 Type definitions

Type definitions in Elm come in two flavours: sum type definitions (via the type
keyword) and type aliases (via the type alias keyword).

Sum types are displayed as a table. Each row represents one constructor, which
can contain argument types.

Type aliases are simply names for existing types. One of the most important
use-cases for this is to give names to record types. Type aliases are simply shown

74

Figure 31: A definition in which the programmer has made an error. In order
to provide instant visual feedback, the background of the definitions view is
shaded red.

Figure 32: The imports view, shown after clicking the button labelled “i”.

75

Figure 33: Top: a type alias for a record type. Bottom: A sum type displayed
as a table. Each row represents one type constructor.

as “tags” containing the alias name and its corresponding type. These are shown
in figure 33.

6.1.4 Evaluating a Module

If the module being edited contains a “main” definition, then a “play” button is
shown in the module header bar. When clicked, the definitions view is hidden,
and the resulting application is displayed. The “play” button turns into a “pause”
button, which allows the programmer to return to the definitions view.

6.1.5 Plain Text View

In section 5, I argued that the programmer should always be able to fall back to
plain text if the structural tools fail her. In Arrowsmith, the programmer can
do this by clicking on the “text file” icon in the module header bar. The module
being edited is then displayed as a plain text file, as shown in figure 35. When
the programmer clicks on the “tick” icon, Arrowsmith compiles the code, and
returns the programmer to the structured definitions view if no errors occurred.

6.1.6 Project View

The project view, shown in figure 36, is a simple list of all the Elm files in the
given git repository. Clicking on any of the module names takes the programmer
to the module view.

76

Figure 34: Pressing the “play” button evaluates a module’s “main” definition and
displays the resulting application. The code is hidden. Pressing the corresponding
“pause” button returns the programmer to the programming interface.

Figure 35: The fallback plain text view. This allows the programmer to edit
code as usual.

77

Figure 36: The project view simply lists all the Elm files in the repository.

6.2 Architecture

Arrowsmith consists of the following components:

• Browser front-end

– Editor (Elm)
– Environment (CoffeeScript)

• Back-end (Haskell)

– HTTP server (Snap)
– Compiler interface

• Modified elm-compiler
• Modified elm-make

These components will be explained in detail in the following sections. In these
sections, I will try to focus in particular on aspects of the system which are
unique consequences of the final design, rather than giving a comprehensive
explanation of every component.

6.3 Front-end

Since Arrowsmith is a tool for programming in Elm, it was a natural choice
to also implement the editor frontend itself in Elm. The hope for this was to

78

eventually bootstrap the editor, ie. develop the editor in itself. While I did
not use Arrowsmith to develop any of its features, it did prove to be a useful
prototyping tool in some cases.

While Elm is a great programming language for creating interactive user inter-
faces, it is quite limited when it comes to many other tasks. This is partially by
design; most of Elm’s limitations simply stem from its immaturity.

Anything that Elm can’t do can be done in JavaScript. Elm features a great
abstraction for communicating with JavaScript code in a type-safe way, ports.
However, I found that the current implementation of ports is quite limiting. I
will describe my use of ports in the following section, and detail some of these
limitations in section 6.5.

Because of this, I separated the front-end code into the editor and the envi-
ronment. The editor is an Elm program which is responsible for rendering the
user interface and reacting to user input. The environment is a collection of
JavaScript modules responsible for communicating with the editor backend and
evaluating the Elm modules being edited.

6.3.1 Editor

The Editor component is an Elm program responsible for displaying the user
interface. The code for this lives in frontend/editor in the Arrowsmith reposi-
tory.9

Its main entry point is in the file Editor.elm. The code in this file is responsible
for:

• interacting with the JavaScript environment through ports
• rendering either a StructuredEditView or a PlainTextView, and dele-

gating actions to those
• rendering the module header
• displaying programmer errors

One of the most beautiful features of Elm’s programming model is that the entire
application state is contained in one single place. Recall the “Elm Architecture”
described in section 4.6. In the example described there, we contained the
application state in one single model definition, a Signal which updates any
time the user performs an action.

This architecture extends neatly to more complex applications with several
sub-components, like Arrowsmith: The states of sub-components are simply
contained as fields in the top-level model (in Editor.elm), and every single
user action is sent to the top-level actions “mailbox”. The top-level update

9The code for Arrowsmith is publicly accessible at https://www.github.com/lachenmayer/
arrowsmith.

79

https://www.github.com/lachenmayer/arrowsmith
https://www.github.com/lachenmayer/arrowsmith

function handles all updates, even those generated by sub-components: updates
are delegated to sub-components by calling their respective update functions.
This has a very useful implication for debugging: by logging the action with
which the top-level update function was invoked, we have an immediate insight
into all actions that are being generated in the entire application. This lets us
easily verify that the application state is being updated as expected.

6.3.1.1 Interacting with the Environment In addition to actions gener-
ated by user interaction, the user interface needs to respond to actions generated
by the back-end, and to the results of evaluating definitions in the Elm program
being edited. To support this, Elm has a feature called ports. These allow
passing values to and from the JavaScript runtime environment from which the
Elm program was invoked.

Outgoing ports allow passing values to JavaScript: in an Elm file, an outgoing
port is declared as a Signal. Any time this signal updates, its current value will
be sent “through the port”. In JavaScript, the port is exposed as a named field
on the Elm module object, and a callback can be registered which will be called
with the value that was emitted by the signal. In practice, an outgoing port’s
signal is usually defined by filtering and pattern-matching on the application’s
model or actions signals.

Incoming ports are declared by simply stating their type in Elm. In JavaScript,
these are exposed on the Elm module object as objects containing a send method.
Invoking this method with a value updates the port’s signal with the specified
value. Elm performs a runtime type check on any value sent through the port.
This is a wonderful feature which ensures the type safety of Elm programs, but
in practice, some of this project’s limitations stem from this feature. These will
be expanded on in section 6.5.

As a concrete example, clicking a “play” button results in an Evaluate action
being emitted in the application’s actions signal. In Editor.elm, a port called
evaluate is declared. It filters all the Evaluate actions from the actions
signal, and emits the names of the definitions which should be evaluated in
the environment. These are then evaluated by running some JavaScript code
(details in the following section), and the resulting value is sent back to the Elm
program.10

6.3.1.2 Model The most important part of the Editor’s state is the elm file
being edited. This is modelled using a type called ElmFile:

type alias ElmFile =
{ filePath : FilePath -- relative to project root

10This example as stated is not entirely true – the actual definition of evaluate is more
complicated. For example, values are also re-evaluated when the module has just been updated
with newly-compiled code.

80

, fileName : ModuleName
, source : ElmCode
, compiledCode : Maybe String
, modul : Maybe Module
, inRepo : Repo
, errors : List ElmError
}

This type contains everything that is required for displaying the editor frontend
and for evaluating definitions in the file. Whenever a module is changed, the
backend compiles the Elm file and sends the resulting value of type ElmFile to
the frontend. This is exposed in the Editor as a port: port compiledElmFiles
: Signal ElmFile.

This signal is merged with the user’s actions in the Editor’s top-level model
signal. Since the view is simply a pure function which is mapped over the model
signal, we don’t need to perform any synchronisation of the view with the model.
Most importantly, since the entire application state is in one well-defined place,
all sub-components are immediately updated with the latest state. Synchronising
sub-components has traditionally been a major pain point in developing web
applications in JavaScript. This has proved to have been solved very neatly by
the Elm approach.

6.3.1.3 View The two major sub-components in the Editor are the
StructuredEditView and the PlainTextView. Of these, the StructuredEditView
is much more interesting – the PlainTextView is simply a text field, along with
an action to finish editing (exposed to the programmer via the “tick” button
shown in figure 35).

Notice that the modul11 field in the ElmFile type has a type of Maybe Module.
If the Elm file can not be parsed, this value will be Nothing, and as a result the
PlainTextView will be displayed, containing the Elm file’s source code.

The Module type is a simplified model of the Elm abstract syntax tree. It
contains fields for imports, type definitions, type aliases, inferred types, and
definitions.

The main task of the StructuredEditView is to create definition views for each
of the definitions in the Module type, as well as managing further sub-views:
ImportsView, DatatypesView and AliasesView.

The StructuredEditView also handles the choice of Value View for values of a
specific type. This is described in detail in section 6.3.3.

11This misspelling is intentional – module is a reserved keyword in both Elm and Haskell,
and can thus not be used as a field name.

81

6.3.2 Environment

The Environment is a set of modules which are responsible for:

• launching the Editor,
• sending edit updates to the backend and sending updated ElmFiles to the

Editor, and
• instantiating and evaluating the Elm module being edited.

The Environment code is in frontend/environment. The modules are written in
CoffeeScript, a JavaScript preprocessor which adds some syntactic conveniences
such as significant whitespace, value destructuring and a lack of superfluous
punctuation. They are transformed into a single JavaScript file using the webpack
module bundler[32]. This JavaScript code is loaded every time the user navigates
to an Arrowsmith URL.

6.3.2.1 Launching the Editor The main entry point is in main.coffee.
This file sets up two routes, which specify what needs shown to the user based
on the URL the user navigated to:

• /username/projectname: This loads the Project View (figure 36), a simple
Elm program which displays a list of all the modules in the project.

• /username/projectname/ModuleName: This shows the Editor for the spec-
ified module.

The user name and project name refer to the name of a GitHub repository. For
example, the user can navigate to /lachenmayer/arrowsmith-example,
which loads the project located at https://github.com/lachenmayer/
arrowsmith-example.

When the user navigates to a URL of this shape, the relevant project or module
are retrieved from the REST API exposed by the backend via an HTTP GET
request. These calls to the backend are defined in the file get.coffee.

When a project is requested, the Arrowsmith.Project Elm program is initialised,
and the received project information is passed to this Elm program through a
port.

When a module is requested, the Arrowsmith.Editor Elm program is initialised
with the received ElmFile. Additionally, callbacks for the editing and evaluation
ports are declared.

6.3.2.2 Edit Updates The callbacks for editing are defined in edit.coffee.

In the Editor, an editDefinition port is defined which updates every time
the the programmer finishes editing a definition. When this port updates, the

82

https://github.com/lachenmayer/arrowsmith-example
https://github.com/lachenmayer/arrowsmith-example

editDefinition callback in edit.coffee retrieves the current value of the
specified definition’s text field, and creates an Edit Action specifying the change.
Edit Actions are described in detail in section 6.4.4.

The constructed Edit Action is then sent using an HTTP POST request to
the backend, in the file update.coffee. In response, the backend returns the
updated and recompiled Elm file. This is passed to the Editor frontend through
the compiledElmFiles port described in the previous section.

Other Edit Actions for adding and removing definitions, and editing plain text
are defined in a similar fashion.

6.3.2.3 Evaluating Elm Code Any time an updated Elm file is received
from the backend, it is immediately “attached to the environment” (using the
function exposed in the file environment.coffee).

This is done by placing the Elm file’s compiled JavaScript code in an iframe,
the “execution frame”, and attaching this to the page. An iframe is an HTML
construct for creating an “inline frame” – its normal usecase is to embed into a
web site contents from another web site. Instead, we are using it as a sandbox
for the compiled JavaScript code: When a <script> tag containing JavaScript
is inserted into an HTML document, it is immediately executed. By containing
this <script> tag in an iframe, we ensure that none of the enclosing page’s
state is overwritten. From the enclosing page, we are able to access any of the
JavaScript values defined inside the iframe.

Any update in the evaluate port in the Editor results in a call to the evaluate
function in evaluate.coffee.

Values of type (ModuleName, List (Name, ModuleName)) are passed through
the port. The first field, of type ModuleName, contains the name of the module
which contains the definitions to be evaluated. The module name is used to
retrieve the Elm module from the “execution frame”.

The second field contains a list of the names of the definitions which are to be
evaluated, as well as the name of a Value View for each definition. These are
described in detail in the following section.

We evaluate each definition in the list by calling into a modified version of
the Elm runtime (in runtime.js). This results in the definition’s value being
rendered below the definition in the user interface.

6.3.3 Value Views

The standard Elm runtime only exposes functions to “evaluate a module” – ie.
to evaluate its main definition.

83

The main definition is enforced by the compiler to be of type Signal Element
(or Element12). This is because the runtime performs the actual rendering of
the resulting graphics, as well as scheduling signals.

I extended the the runtime to allow passing in a specific definition name to
be evaluated instead of main. Since a definition can be of arbitrary type, the
runtime had to be extended to render arbitrary types.

I solved this by creating Value Views. These are Elm modules which are able
to transform a value of some given type into an Element, for rendering by the
runtime.

As mentioned previously, each evaluate action contains the name of a Value
View for each definition. This is used in the evaluate JavaScript callback to
instantiate the correct Value View for each value.

Since we instantiate and call Value View modules “manually” from Javascript
(which does not have a static type system),these modules need to conform to a
specific interface. Every Value View contains an info field of type ViewInfo,
and a view function, which is a function from any arbitrary type to Signal
Element. Note that this is not the same as specifying the type to be a ->
Signal Element, since most Value Views operate on values of a specific type.
Run-time type checking is not possible in Elm, so we have to make sure that the
given Value View is actually able to process a given value.

The ViewInfo type is defined as follows:

type alias ViewInfo =
{ matches : Type -> Bool
, name : ModuleName
}

The function matches is a rudimentary run-time type checking solution. The
current implementations match types using regular expressions. The name of the
module needs to be provided since Elm provides no way of accessing a module’s
name at run-time.

The current Value View implementations can be found in the namespace
Arrowsmith.Views. Simple special representations currently exist for Colors,
Lists and Dicts, shown in figure 29. The GraphView plots the value of a Signal
Float over time (figure 30). If no Value View matches the type of a given
definition, the SimpleView renders the value, which results in a simple string
representation.

This approach is easily extendable: a new Value View can be added to the
system by simply providing a module which conforms to this interface. The

12Recall that this means that the Element does not change for the duration of the pro-
gram. In the runtime, it is simply “lifted” to the Signal Element type using the function
Signal.constant : a -> Signal a.

84

provided Value Views are quite simple, but they demonstrate the power of this
approach. In particular, being able to plot Signals over time is an invaluable
debugging tool.

A drawback of the current implementation is that these Value Views are read-
only, ie. values can not be edited inside a Value View. This is mostly due to
the fact that there is currently no satisfactory way to communicate between
Elm programs running in the same environment. A further drawback is the fact
that arbitrary records can not be rendered. This is because Elm provides no
meta-programming tools such as type introspection or macros. Thus, it currently
is not possible in Elm to fully achieve the vision outlined in section 5.5. However,
even this partial solution is a significant improvement over current development
tools, in particular for debugging time-varying values.

6.4 Back-end

The Arrowsmith back-end consists of a web server, which serves the frontend
web application as well as exposing a REST API for retrieving Elm files and
projects, as well as an interface to the Elm compiler.

The back-end is written in Haskell, mostly because the Elm compiler is also
written in Haskell. The backend code lives in the backend/ directory.

6.4.1 Web Server

The frontend code and API are served using the Snap web framework. This
framework features a fast HTTP server as well as a “sensible and clean monad
for web programming”[24].

Our usage of the Snap framework is quite simple: to serve the frontend, we define
a “catch-all” route which simply loads the JavaScript code containing the Editor
and the Environment. This is defined in Main.hs. This is done because the
routing is performed in the client-side JavaScript code, as described in section
6.3.2.1.

The bulk of the serving code is in the API, in Api.hs. This file defines three
routes:

• GET api/:backend/:user/:project: This route returns a Project,
which contains a list of all the Elm files in the given repository.

• GET api/:backend/:user/:project/:module: This route returns an
ElmFile (as described in section 6.3.1.2).

• POST api/:backend/:user/:project/:module: This route is used to per-
form edits on the given Elm file.

85

Retrieving projects and modules relies on git.13 Projects are retrieved from
a git repository using git clone, and stored within the repos/ directory. A
valid project is any git repository which contains an elm-package.json file.
This file is used by the Elm build tools to determine the location of source files,
as well as any package dependencies of a project.

Once a repository is cloned, Arrowsmith reads the elm-package.json file to find
the locations of all the Elm source files in the repository. These are transformed
into ElmFile objects which contain the Elm source code and all associated
metadata. When a specific module is retrieved, the corresponding Elm file is
compiled, populating the compiledCode field of the ElmFile object if compilation
was successful, or the errors field if compilation errors occurred.

“Backend” in these routes refers to the host of the given git repository. Currently,
the only working project backend is GitHub: in this case, the user and project
fields correspond to GitHub user names and project names. This can be extended
easily to any service which provides a git endpoint, by specifying a backend
name and a URL from which the project is to be cloned. The compilation of
Elm modules is described in detail in section 6.4.2.

The routes return JSON-encoded versions of the given datatypes. These are
structured in such a way that they can be automatically transformed into Elm
types in the frontend.

6.4.2 Compilation

In order to provide a structural editing interface, Arrowsmith needs to be
able to access an Elm file’s abstract syntax tree (AST). The Elm compiler by
default does not expose the AST. Instead, a call to the public compile function
(in the Elm.Compiler module) returns an interface, as well as the compiled
JavaScript code. The interface is a high-level description of a module’s exported
definitions, types and dependencies, and is used for cross-module typechecking.
This unfortunately does not provide us with enough information about the
structure of the code. I thus modified the compile function to also return the
module’s full AST.

Elm files are normally compiled using the elm-make command, a build tool
which installs a project’s dependencies and can compile multiple files. elm-make
writes a compiled module’s interface and JavaScript code into interface files
(with extension .elmi) and object files (with extension .elmo). I modified the
elm-make package to depend on the custom elm-compiler. Since the modified
elm-compiler returns a module’s AST along with the interface and JavaScript
code, I modified elm-make to additionally write an AST file with extension
.elma to the same location as the other two files. The AST file is simply a
JSON-encoded representation of an Elm AST.

13A basic knowledge of the git version control system is assumed throughout.

86

In the Arrowsmith.ElmFile module, we compile an Elm file by launching the
modified version of elm-make, and reading the resulting files from a temporary
directory. Rather than exposing the raw Elm AST to the rest of the program, I
created a much simpler model of the structure of an Elm program, the Module
type.

6.4.3 Module

The Module type is one of the most important types in the entire system. It is a
simplified model of the Elm AST which exposes only the information required
by the frontend to edit an Elm file, and is defined as follows:

data Module = Module
{ name :: ModuleName
, imports :: [Import]
, types :: [(VarName, Type)]
, datatypes :: [(VarName, AdtInfo)]
, aliases :: [(VarName, ([VarName], Type))]
, defs :: [LocatedDefinition]
}

The types field contains the types inferred by the Elm compiler for every
definition in the module. The datatypes field contains the definition of every
sum type (“ADT”). The aliases field contains the definition of every type alias,
ie. alternate names given to previously-existing types. These fields, as well as
the name and imports can be retrieved from the AST in a straightforward way.

Definitions are more complicated. They are defined as follows:

type LocatedDefinition =
(VarName, Maybe Type, ElmCode, Location {- start -} , Location {- end -})

The two locations contain line & column numbers, and represent the range in the
source code which bounds the definition. Since we want to allow the programmer
to edit definitions as text, we need to be able to provide a mapping between a
definition and its location in the original code.

The Elm compiler provides location information for expressions. Unfortunately,
this does not include the left-hand side of definitions or a definition’s type
declaration. Thus, the Arrowsmith.Module module contains some hacks to
ensure that the reported locations bound the entire definition.

This approach is error-prone and severely limits the current implementation of
Arrowsmith: it is currently not possible to edit imports, type aliases or type
definitions, as these do not expose any location information at all. This is an

87

unfortunate limitation of the current Elm AST: if every node contained location
information, changes in the abstract structure could be performed by editing
the program text.

A different solution I briefly explored was to edit the abstract structure of the
program directly, and then “pretty-printing” the AST. The results are unfortu-
nately anything but pretty, since the pretty-printing does not take into account
any “syntax sugar”14 or code formatting, and removes comments. Reformatting
the entire code is not acceptable for any tool which claims to integrate with
existing systems and workflows.

6.4.4 Editing

In the same way that Elm programs are structured as a sequence of pure function
applications on an immutable state, edits of an Elm file are represented as pure
functions applied to the Elm file.

Every edit is represented by a specific Edit Action. The EditAction datatype is
defined as follows:

data EditAction
= AddDefinition Definition
| ChangeDefinition VarName ElmCode
| RemoveDefinition VarName
| ReplaceText ElmCode

The file Edit.hs contains a set of functions corresponding to each of these
actions, which perform the necessary changes to the source code and Module.
Importantly, these are pure functions: they only require an ElmFile and an
EditAction as input, and produce exactly the same output any time they are
invoked with the same arguments.

Once an Edit Action has been applied, the resulting source code is committed to
the project’s git repository, and a machine-readable Edit Update tag is written
to the commit message.

An Edit Update is a tuple, (ModuleName, Maybe RevisionId, EditAction).
If the edited code fails to compile, the RevisionId field will be populated with
the revision ID of the last working version of this Elm file.

This is an essential feature of the system. If an Elm file can not be parsed, no
AST is produced by the compiler. If no AST is produced, we can not easily
provide a structural editing interface, since we don’t know the structure of the
program. In order to provide a structural editing interface in that case, we

14As an extreme example, the simple if-expression, eg. if foo then bar else baz, is
actually syntax sugar for a “multi-way” if-expression using guards. The example expression
would be pretty-printed as if | foo -> bar | True -> baz, which is hardly “pretty”.

88

compile the Elm file by “checking out” its last working revision. We then retrieve
the Edit Updates from all the revisions which follow the last working revision,
and apply the corresponding Edit Actions to the Elm file.

If the current revision contains a broken file and does not contain a corresponding
Edit Update tag (such as when the file has been edited using a different tool),
we have no option but to display a plain text editor to the programmer. Once
the error is fixed, and the compiler is able to parse the file, we can obviously
display the structured editing interface again.

This approach is an interesting application of the functional programming
paradigm to the structural editing problem, with several benefits. Since every
change to the program is represented as a pure function, we are able reconstruct
a valid AST from a previous AST, even when the current version is not parseable.
Storing each change in version control enables some interesting features. Since
changes are described at a semantic level (ie. “add definition foo” rather than
“add these lines, remove these lines”), the editor could provide a much more
meaningful view of the history of the file to the programmer. The editor can
also support truly “infinite undo” – the “undo state” is never lost, since every
single change is persisted in the version control system.

There are still some outstanding improvements that could be made to this feature.
In its current implementation, every change triggers a new commit. This can
result in a very “noisy” git history. The editor should provide the programmer
a way to “squash” these changes into a single commit, and to give this commit a
meaningful commit message, while preserving the individual actions contained
in the commit.

6.5 Limitations

While Elm is an absolute please to work with, it currently lacks some essential
features. None of these are fundamental limitations of Elm, instead most of the
issues I discovered stem from its immaturity. The Elm community is dedicated
to the thoughtful design of the language and libraries, and I am confident that
most of the issues mentioned here will be addressed satisfactorily.

To illustrate the level of immaturity of the language: The project was originally
written in Elm 0.14.1, and was ported to Elm 0.15 around April 2015. This
required quite a bit of work, since I had modified the Elm compiler and the
elm-make tool. However, upgrading the compiler was not simply an aesthetic
choice; the language underwent some breaking changes in syntax, as well as some
much-needed improvements to the core library. In particular, the Mailbox type
was added, which is an essential aspect of the Elm architecture (as described in
section 4.6), and hugely simplifies the treatment of sub-components in a complex
Elm application. Additionally, the Task abstraction for describing effectful
computations in Elm was added. Without this, it was previously not possible to
send network requests from within an Elm application – the necessary requests

89

needed to be sent from JavaScript code communicating with the Elm program
through ports. Since I had at that point already created a robust implementation
for communicating with the backend in the “Environment” CoffeeScript code, I
chose not to rewrite this part of the system.

Ports, Elm’s feature for communicating with surrounding JavaScript code, proved
to be the biggest source of limitations in this project. The most glaring omission
of this feature at the time of writing is that it is not possible to send values with
sum types through a port.

This is due to the fact that values flowing through ports are represented as
JavaScript (JSON) objects, and there is no obvious way to express sum types in
JSON. Aeson[1], the de-facto standard Haskell JSON library, solves this using
Template Haskell, the Haskell meta-programming extension. This automatically
generates JSON de- and encoders for the specified types, with various options
for representing sum types.

A similar approach is not possible in Elm, since it does not have any meta-
programming capabilities such as macros or type introspection. However, Elm
does expose a “raw JSON” datatype, from which the relevant de- and encoders
can be generated manually. The discussion around solving this problem has been
ongoing since February 2014[11], but a solution has yet to be implemented.

The biggest limitation this imposes on Arrowsmith is that types can not be
represented structurally in the frontend code; instead they are currently repre-
sented as (“pretty-printed”) strings. Since the representation of types is such an
important aspect of our design goal specified in section 5, I attempted to work
around this on two separate occasions – in both cases deciding that the change
would result in a disproportionate amount of useless code in the system.

Writing JSON de- and encoders is a routine task so simple that it can be
automated, as Aeson does. The real issue in our case is that values of type
Type occur in various deeply-nested places within the types used to represent
Elm modules. These types would all have to be parameterised, and conversion
functions written for each. Additionally, the Type type is a complex, nested
structure which is itself parameterised. In the end, I decided that there were
more interesting and/or important challenges to be solved, since this should
really be handled by the compiler. (Unfortunately this issue was not fixed by
the project deadline.)

This problem has a more general implication: currently, the only way two Elm
programs can communicate is via ports “wired up” in JavaScript. They are thus
limited to a small subset of types in their communication. For example, it is
currently impossible to send a value of type Element between two Elm programs,
only because Color is represented as a sum type.

Additionally, it is currently not possible to send key-value mappings expressed as
JSON Objects through ports. The obvious interpretation would be to expose this
as a value of type Dict in the Elm code, but since the contents of the Object also

90

need to be type-checked to ensure type safety, this is currently not implemented.
I solved this issue by exposing all key-value mappings as associative lists15, and
manually constructing the corresponding Dict values.

I would have liked to add more sophisticated code editing with syntax highlighting
to the definition views using the CodeMirror[6] JavaScript editor library. Since
it is not possible to run arbitrary JavaScript code within an Elm program, I was
not able to get the library to work. The main complication is that a dynamic
number of CodeMirror instances need to be instantiated, one for each definition
being displayed in the edit view. Various “hacks” to solve this were unsuccessful
– the real solution would be to create an Elm package exposing the library using
Elm’s Native feature which allows the creation of Elm modules using JavaScript.
This would be a nice future improvement, but is not an essential feature.

The Elm compiler itself was not designed with tools like this in mind. For
example, compilation errors are currently not exposed in a machine-readable
format. We would thus have to parse the error messages for location information
and other metadata. One resulting limitation is that we currently do not display
error messages inline with the offending definition, as described in section 5.6.
Fortunately, this feature is already implemented for the next version of Elm, so
the implementation of this feature will be trivial in future.

As mentioned in section 6.4.3, the AST does not expose an adequate mapping
between the source code and the abstract structure. This is something that
would be very useful for implementing similar tools in future.

At the beginning of the project I was worried that Elm was fundamentally
not powerful enough to implement this project satisfactorily, since most Elm
examples found online were either very simple or very buggy (or both). This
fear has proven to be unfounded; Elm is a truly wonderful language which solves
the specific problems of interactive user interface code in innovative ways. There
is a small but enthusiastic community surrounding the language, and I expect
that the above-mentioned kinks will be ironed out in due course.

15An associative list is a list of tuples containing the keys and values, ie. List (key, value).

91

7 Evaluation

In the development of programming tools, quantitative measurements have
proven to be effectively worthless. Programming efficiency is notoriously difficult
to measure, and most quantitative measures are at best meaningless, and at
worst misguiding and harmful. For example, “lines of code written” is an actively
harmful measurement, since it provides no notion of whether a given problem has
actually been solved: in most cases, solutions requiring less code are preferable.

Qualitative evaluations for these kinds of tools suffer from a problem of vagueness
and lack of actionable data. Attempts to solicit feedback about the project from
other programmers have resulted in insights that go not much further than “this
looks really interesting”.

By systematically asking the right questions, we can perform a qualitative
evaluation which can be as useful as a quantitative one in this specific context.
In particular, constricting ourselves to a specific set of questions allows us to
draw comparisons between systems, and allows us to identify exactly what is
novel about our contribution.

In the following, we will use the conceptual framework stated by Bret Victor in
his essay “Learnable Programming”, as introduced in section 2.2. This framework
decomposes the vague notion of “what makes a good programming environment”
into a set of specific, meaningful questions. It is particularly useful since it
covers a wide range of problems which need to be addressed in some way by
any system for programming. Notice in the following that these questions are
entirely technology-independent – indeed they provide meaningful answers for the
majority of programming systems, even such simple ones as pen and paper. In
fact, the solutions proposed in the essay itself are quite different to our solutions,
but the questions themselves have proven to be useful guides. In this section, I
will attempt show how Arrowsmith addresses the problems hinted at by each of
these questions, and how the system can be improved further.

7.1 read the vocabulary – what do these words mean?

Arrowsmith in its current state only provides a marginal improvement on current
systems with regards to this question.

In the functional programming paradigm, types are by far the most useful way to
figure out “what the words mean”. Within a single module, Arrowsmith provides
some useful information: the inferred types are shown for each definition in the
module, even if they are not explicitly declared in the underlying code. This is
already quite helpful, but this does not go far enough.

Arrowsmith should provide an easy way to see the types of definitions from
outside the current module. This is currently possible by naming a definition, and
looking at the inferred type which appears. However, this is hardly “immediate”.

92

The type of any “word” being entered by the programmer should be immediately
visible on the screen. That this is possible is demonstrated by the “Try Elm”
code editor featured on the Elm website[31]. This provides type information for
any definition under the programmer’s editing cursor. Integrating this into the
current Arrowsmith system should not be a difficult task.

Additionally, Arrowsmith currently does not support “docstrings”, which allow
the programmer to provide documentation for every definition in a module. This
documentation is currently exposed in the Elm package repository in a similar
way to Java’s “Javadocs”. This is quite a glaring omission, which I only realised
late in the development process. This feature could be added quite easily –
Arrowsmith’s user interface is perfectly suited for exposing this documentation
in an unobtrusive way, and the Elm AST provides a simple way to access the
docstring for any definition. Each definition’s editor could expose an additional
button which shows the documentation corresponding to that definition, in the
same way that the mockup in figure 23 shows an additional button for editing a
definition as text.

7.2 see the state – what is the computer thinking?

Learnable Programming demands the following of a programming system to
enable the programmer to see the state:

• The environment must show the data. If a line of code com-
putes a thing, that thing should be immediately visible.

• The environment must show comparisons. If a program
computes many things, all of those things should be shown in
context. This is nothing more than data visualization.

• The system must have no hidden state. State should either
be eliminated, or represented as explicit objects on the screen.
Every action must have a visible effect. [4]

Arrowsmith takes advantage of Elm’s programming model to tackle these issues:
since computations in Elm are exposed as definitions, no line of code “computes a
thing” until it is evaluated. Evaluation in Arrowsmith is exposed as a simple “play
button” on each definition, which makes the computed value immediately visible
to the programmer. The added feature of Value Views is another improvement:
for example it allows the programmer to values of type Color as actual colours,
rather than a vector of its RGB components.

Value Views can also be used to “show comparisons”: the elements of collections
such as lists or key-value mappings are displayed side-by-side (as shown in figure
29). This feature could be improved further: more tools for data visualisation
could be exposed to the programmer, such as plotting numerical values in a list.

93

Arrowsmith provides the tools to do so: Value Views are extendable, so additional
views for specific types can easily be added. Most of these will be highly context-
dependent, providing information relevant to a specific type.

Elm excels at the third point: Elm programs contain absolutely no hidden
state. The only construct for storing state is the foldp function on Signals.
Arrowsmith allows the programmer to represent this state as an explicit object
on the screen in exactly the same way that every other value can be displayed.

These simple user interface components are transformative to the programming
experience: any change in the code is immediately reflected in the resulting
values. The programmer is thus always aware of “what the computer is thinking”:
she can inspect the value of any pure definition at any time, and time-varying
values can be inspected just as easily.

The Light Table project shows that further improvements can be made: the
InstaREPL feature in Light Table shows the programmer the value of every
single sub-expression when an expression is evaluated. This is an immensely
useful tool for understanding programs, particularly for rapidly locating the
source of a bug. Unfortunately this feature would require a significant amount of
additional work in both the Elm compiler and runtime, as well as in Arrowsmith
itself.

7.3 follow the flow – what happens when?

The programming interactions in Learnable Programming are described in the
context of imperative programs. In imperative programming, the question of
“what happens when” is much more important than in functional programming:
since operations are executed in order, line by line, every operation is temporally
related. In contrast, the values of pure definitions are independent of execution
order, since the output of a pure function is always the same, no matter “when”
it is invoked. Of course, a user-facing program can not be entirely pure, since
the user expects to be able to interact with it. This is where Elm’s programming
model shines – it confines time-varying values to specific definitions which can
be reasoned about independently.

The specific requirements on the programming system with regards to this
question are:

• The environment can make flow tangible, by enabling the pro-
grammer to explore forward and backward at her own pace.

• The environment can make flow visible, by visualizing the pat-
tern of execution.

• The environment can represent time at multiple granularities,
such as frames or event responses, to enable exploration across
these meaningful chunks of execution. [4]

94

Projects such as Elm’s time-travelling debugger and Elm Reactor demonstrate
that Elm is perfectly suited to making flow tangible. These tools allow the
programmer to explore forward and backward by letting the programmer pause
time and move through time using a slider. I was not successful in adding these
features into the current version of Arrowsmith, but the system is perfectly
suited for exposing such features to the programmer.

Arrowsmith is quite successful in making flow visible: for example, time-varying
numeric values can be plotted over time (as shown in figure 30). Signals of
other types currently simply display their latest value. This can be improved
further by creating a “timeline” Value View, which would allow the programmer
to additionally inspect the past values of a signal. This can be easily achieved
within the current system.

The third point is solved by Elm: “time” in Elm only ever proceeds in discrete,
meaningful events. Our editing model follows this philosophy: we store edits of
a program as meaningful events, such as “add definition foo with value bar”.
This has some interesting implications for features which allow the programmer
to explore past states of the program, as well as understanding the evolution of
a program.

Elm’s time-travelling debugger features an even more powerful tool for making
the entire flow of the program visible: it displays a labelled graph of all the
signals in a given program (shown in figure 4). This would allow the programmer
to see literally the entire state of a program as it evolves over time. However,
integrating this feature into a usable system has proven to be a huge user interface
design challenge: the second version of Elm’s time-travelling debugger, Elm
Reactor, removed the “signal graph” view due to fears of it being too complex
for the average user.

7.4 create by reacting – start somewhere, then sculpt

Arrowsmith and Elm provide an excellent set of tools for “creating by reacting”.
Compared to most imperative programming languages, functional programming
languages provide a much easier way to “sculpt” programs. Once defined, pure
functions are easily composable. Because they are pure, the programmer can
write and test each function individually, without having to worry about the
function affecting the execution of any other part of the program.

However, the demands posed by Learnable Programming are more stringent:

• The environment must be designed to get something on the
screen as soon as possible, so the programmer can start
reacting. This requires modeling the programmer’s thought
process, and designing a system that can pick up on the earliest
possible seed of thought.

95

• The environment must dump the parts bucket onto the
floor, allowing the programmer to continuously react to her
raw material and spark new ideas. [4]

Arrowsmith allows the programmer to instantly inspect the value of any definition,
once it written. As the result updates immediately, the programmer can easily
react to the resulting changes.

In the essay, Bret Victor focuses on features “which can jump-start the create-
by-reacting process”. These include an auto-complete feature which additionally
populates default values for parameters, as well as ways to manipulate these
values using sliders. This is currently not implemented in Arrowsmith, but this
is a perfect example of a possible editing view enabled by the ideas outlined in
section 5.5.

The idea of “dumping the parts bucket onto the floor”, which in the essay
manifests in a list of possible functions and syntax constructs the programmer
can choose from, is not addressed by Arrowsmith at all. This requires some
additional interaction design to turn into a feature which works well for the
majority of programming tasks. This is an interesting direction for future work.
Elm seems to be well-suited for this kind of interaction: its strong type system
enables very powerful auto-completion, as demonstrated by Lamdu.

7.5 create by abstracting – start concrete, then generalize

This is a very interesting aspect of the essay, and one that has not been addressed
sufficiently in the current version of Arrowsmith.

• The environment should encourage the learner to start con-
stant, then vary, by providing meaningful ways of gradually
and seamlessly transitioning constant expressions into variable
expressions.

• The environment should encourage the learner to start with
one, then make many, by providing ways of using those vari-
able expressions at a higher level, such as function application
or looping. [4]

Victor demonstrates interactions which allow the programmer to extract a
constant value into a variable, as well as turning lines of code into a function.
This functionality is provided by some widely-used IDEs such as Eclipse, and is
indeed very useful. Arrowsmith currently has no such features.

The Elm language once again provides a strong foundation for these kinds of
interactions: since definitions are referentially transparent, the programmer can
extract constant values and sub-expressions into separate definitions with the
confidence that doing so will not change the meaning of the program. This kind

96

of feature requires a lot of further engineering effort in the Elm environment.
The editor needs to be integrated more tightly with the Elm abstract syntax
tree in order to provide such highly contextual editing tools.

7.6 Conclusion

The conceptual framework put forward in Learnable Programming has proven to
be a very useful guide for the design of any programming system. By decomposing
the design problem into these specific, actionable questions we are able to
demonstrate the precise areas in which we have contributed an improvement,
and where further improvements can still be made. These questions do not assume
any particular features of the proposed solution. Indeed, our interpretation of
these questions is in some cases quite different to their interpretation in the essay.
For example, the functional programming paradigm addresses questions of state
and time in fundamentally different ways to the imperative paradigm. Instead,
they focus on the thinking process involved in programming, which is something
that is far too often overlooked in the design of programming environments.

As our use of the Learnable Programming framework shows, Arrowsmith provides
significant improvements in some aspects of the programming process, but a lot of
further progress can be made. In particular, Arrowsmith gives the programmer a
more immediate connection to the program than most other tools for functional
programming. However, it can not truthfully be said that Arrowsmith is a
particularly more “learnable” environment: using it effectively requires a solid
understanding of the Elm programming model, and it provides virtually no
assistance to the programmer for understanding the “vocabulary” of the standard
library, or other libraries.

This is a significantly more complex task than the one we set out to solve. The
Elm community provides a number of sources which aid in the learning process,
such as gentle introductions to the Elm programming model (similar to the one
in section 4), and comprehensive documentation of the standard library. Some
“learnable” aspects can certainly be integrated into Arrowsmith itself, but careful
interface design work needs to be undertaken to ensure that the tool does not
become too complex or intimidating itself.

97

8 Future Work

The possibilities for future work are effectively infinite: with every innovation in
human-computer interaction come new possibilities for creating novel interfaces
for programming. In this section I will outline some of the more immediate
future work enabled by the progress we have already made, and will then try to
outline some more ambitious goals.

Value Views, which are explained in detail in section 6.3.3, have the possibility
to enable transformative insights into the values in a program. The views which
are currently implemented already give the programmer instantly valuable visual
feedback. Further Value Views can easily be created and added into the system.
This feature could be hugely improved by allowing programmers to add their
own custom Value Views for certain specific datatypes in their program, by
means of a “plugin” system.

I was not able to implement several of the ideas charted out in the Design section
(section 5). In particular, the user interface treatment of types, as well as drag
& drop function application deserve some further work.

Arrowsmith’s user interface provides an excellent framework for designing inter-
active interfaces for values of specific types. An immediately useful interface
would be the “spreadsheet interface” described in section 5.5. Such a feature
would also benefit immensely from a well-designed plugin architecture enabling
programmers to specify their own editing UIs.

A further immediately obvious improvement would be the integration of Elm’s
time-travelling debugging features. This would not be very difficult to implement,
since the Elm runtime has been designed with such features in mind.

The treatment of programmer errors could be improved. Errors should be
shown close to their source, and the editor should also provide functionality to
“automatically fix” some errors. For example, misspellings of names are already
exposed by the Elm compiler. The programmer should be able to fix such an
error in one click.

Further improvements could also be made with type errors. For example, after
changing a datatype, the programmer could be shown all occurrences of this
type in a program, so that she can fix all possible type errors immediately. This
would be invaluable for performing refactoring work in large applications.

An area which should definitely be explored is “true” structural editing for
Elm programs, in the style of Lamdu. As outlined in section 3.9, the biggest
limitation of currently existing structural editing tools is not that they are less
powerful than editing text, but that they do not integrate well with essential
parts of the programming ecosystem. Conceptually, such tools offer a huge
improvement on plain text editing. In particular, the “hole-driven programming”
ideas demonstrated by Lamdu are immensely powerful. Arrowsmith, with its

98

integration with GitHub and its emphasis on hiding rather than replacing text,
seems like a suitable model for future work on a structural editing tool.

In the Design section I outlined some ideas for interacting with the program
using drag & drop. This could be taken much further, with the aim of completely
removing keyboards from programming. This has been attempted many times
over, but I am confident keyboards will soon be just as archaic as punch cards.

99

9 Conclusion

In 2015, most programmers still develop programs by writing some code, imagine
the resulting changes in their head, then run this code to verify their changes.
As Bret Victor has demonstrated so forcefully, this is unfortunate: programmers
do not have an immediate connection to what they are creating.
Indeed, the fundamentally important insight is this:

That is so important to the creative process: to be able to try ideas
as you think of them. If there’s any delay in that feedback loop
between thinking of something, and seeing it, and building on it,
then there is this whole world of ideas which will just never be. [3]

It is this particular problem that I tried to tackle with the design and implemen-
tation of Arrowsmith.
Arrowsmith gives the programmer a much tighter feedback loop between thinking
of something, and seeing it: the programmer can instantly evaluate any definition
in their program, and can see these values update immediately if she changes
them.
What’s more, the programmer is able to see meaningful alternative representa-
tions of these values, using Value Views. These give the programmer a deeper
insight into the true meaning of the program. I have demonstrated Value Views
for certain types of value, but the true power of this approach is that it is easily
extendable. Value Views can be defined for any type, and can enable highly
contextual ways of inspecting the values in a program.
Arrowsmith is in some sense a “structural” editor: it exploits the structure
of the program to give the programmer separate editing interfaces for each
definition. These can in theory be transformed into context-specific structural
editing interfaces, although I was not able to implement a working version of
this within the scope of this project.
What sets Arrowsmith apart from other structural editors is that it does not
disregard the underlying textual representation of the program. Other structural
editors completely replace this representation with interactive interfaces, while
Arrowsmith simply augments the plain text editing experience. Because of
this, Arrowsmith is able to expose as much or as little structural editing as
is required by the programmer at any given point. In fact, the programmer
can always continue to edit the program as text if structural editing tools fail
her. In particular, its approach to structural editing allows the programmer to
collaborate with other programmers not using this particular tool, since they
can continue to use traditional editing environments.
The system was designed with some fundamental principles in mind. These
principles are a useful guiding light for the future development of similar sys-
tems. In particular, the importance of giving the programmer an immediate

100

connection to the program is crucial for the successful design of programming
environments. With regards to this principle, we have made some great progress
with Arrowsmith. However, huge improvements are still possible.

Another crucial insight is that programming is not a “blank slate”: hundreds of
thousands of hours have been spent developing a huge number of programming
systems and processes. Arrowsmith integrates well with current programming
systems and workflows: Elm projects are retrieved from GitHub or any other
git host, and changes made in the system are preserved in the git history of
the project.

This principle is ignored by most projects which attempt to provide a novel
programming experience. It is very tempting to start from scratch, and to
re-invent the world entirely. The end results are invariantly lacking.

Even though functional programming is one of the oldest programming paradigms
in existence, it has historically tended to remain at the fringes of the mainstream
programming world. The paradigm provides a simple conceptual framework
for reasoning accurately about programs. Unfortunately, this simple concep-
tual framework has been shrouded in arcane, academic jargon propagated by
communities that value cutting edge reasearch over all else. This has resulted
in an environment that is needlessly hostile to beginners, as well as a lack of
essential tools for software engineering. Communities such as Elm’s, which focus
on accessible, understandable documentation and a friendly environment for
beginners are a welcome change.

I am confident that our conception of “programming” will change drastically in
the coming years as some of the ideas being developed now make it into usable
systems.

We will soon escape the horrible prison of monospace fonts, curly braces and
semicolons, and will enter the world of thoughts manifested in front of our eyes.

101

Bibliography

[1] aeson: Fast JSON parsing and encoding | Hackage: https://hackage.haskell.
org/package/aeson.

[2] Braid: http://braid-game.com/ .

[3] Bret Victor - Inventing on Principle - CUSEC 2012: https://vimeo.com/
36579366 .

[4] Bret Victor - Learnable Programming - September 2012: http://worrydream.
com/LearnableProgramming/ .

[5] Bret Victor style reactive debugging - Laszlo Pandy: https://www.youtube.
com/watch?v=lK0vph1zR8s.

[6] CodeMirror: https://codemirror.net/ .

[7] DeepArrow: Arrows for “deep application” | Hackage: https://hackage.
haskell.org/package/DeepArrow.

[8] Elliott, C. 2007. Tangible Functional Programming. International Conference
on Functional Programming (2007).

[9] Elm - functional web programming: http://elm-lang.org/ .

[10] Elm’s Time Travelling Debugger: http://debug.elm-lang.org/ .

[11] Feature Request: Arbitrary (First-order) Datatypes in Ports · Issue #490 ·
elm-lang/elm-compiler: https://github.com/elm-lang/elm-compiler/ issues/490 .

[12] Gorilla REPL Renderer: http://gorilla-repl.org/renderer.html.

[13] Gorilla REPL: http://gorilla-repl.org/ .

[14] Hookway, B. 2014. Interface. MIT Press.

[15] Hopscotch: http://www.gethopscotch.com/ .

[16] IHaskell: https://github.com/gibiansky/ IHaskell.

[17] IPython Notebook: http:// ipython.org/notebook.html.

[18] Lamdu - towards the next generation IDE: http://peaker.github.io/ lamdu/ .

[19] Light Table - a new IDE: https://vimeo.com/40281991 .

[20] Matthias Mueller-Prove - Correspondence with Alan Kay: http://www.
mprove.de/diplom/mail/kay.html#Nov00 .

[21] MIT Scratch: http://scratch.mit.edu/ .

[22] PureScript: http://www.purescript.org/ .

[23] Scratch File Format (2.0) - Scratch Wiki: http://wiki.scratch.mit.edu/wiki/
Scratch_File_Format_(2.0).

102

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/aeson
http://braid-game.com/
https://vimeo.com/36579366
https://vimeo.com/36579366
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
https://www.youtube.com/watch?v=lK0vph1zR8s
https://www.youtube.com/watch?v=lK0vph1zR8s
https://codemirror.net/
https://hackage.haskell.org/package/DeepArrow
https://hackage.haskell.org/package/DeepArrow
http://elm-lang.org/
http://debug.elm-lang.org/
https://github.com/elm-lang/elm-compiler/issues/490
http://gorilla-repl.org/renderer.html
http://gorilla-repl.org/
http://www.gethopscotch.com/
https://github.com/gibiansky/IHaskell
http://ipython.org/notebook.html
http://peaker.github.io/lamdu/
https://vimeo.com/40281991
http://www.mprove.de/diplom/mail/kay.html#Nov00
http://www.mprove.de/diplom/mail/kay.html#Nov00
http://scratch.mit.edu/
http://www.purescript.org/
http://wiki.scratch.mit.edu/wiki/Scratch_File_Format_(2.0)
http://wiki.scratch.mit.edu/wiki/Scratch_File_Format_(2.0)

[24] Snap: A Haskell Web Framework: http://snapframework.com/ .

[25] Swift - Overview - Apple Developer: https://developer.apple.com/swift/ .

[26] Tangible Value - Haskell Wiki: https://wiki.haskell.org/TV .

[27] The Elm Architecture - Evan Czaplicki: https://github.com/evancz/
elm-architecture-tutorial.

[28] Time Travel Made Easy - Introducing Elm Reactor: http://elm-lang.org/
blog/ Introducing-Elm-Reactor.elm.

[29] TouchDevelop: https://www.touchdevelop.com/ .

[30] Tributary: http:// tributary.io/ .

[31] Try Elm: http://elm-lang.org/ try.

[32] webpack module bundler: http://webpack.github.io/ .

[33] Wiki - WishfulThinking: http://c2.com/cgi/wiki?WishfulThinking.

103

http://snapframework.com/
https://developer.apple.com/swift/
https://wiki.haskell.org/TV
https://github.com/evancz/elm-architecture-tutorial
https://github.com/evancz/elm-architecture-tutorial
http://elm-lang.org/blog/Introducing-Elm-Reactor.elm
http://elm-lang.org/blog/Introducing-Elm-Reactor.elm
https://www.touchdevelop.com/
http://tributary.io/
http://elm-lang.org/try
http://webpack.github.io/
http://c2.com/cgi/wiki?WishfulThinking

	Introduction
	Principles
	Creators Need an Immediate Connection to What They Create
	Environment & Language
	Human & Machine
	Integrate with Existing Systems

	Prior Work
	Bret Victor – Inventing on Principle
	Elm's Time-Travelling Debugger and Elm Reactor
	Light Table
	Lamdu
	Tangible Values
	Blocks-based graphical programming environments: Scratch and Hopscotch
	Touch-based programming environments: TouchDevelop
	Notebook environments: IPython Notebook and Gorilla REPL
	Conclusion

	Functional Reactive Programming with Elm
	Definitions: Immutable Values, Functions and Types
	Evaluation: Purity and Referential Transparency
	Collections and Higher-Order Functions: map, filter, fold
	Structured Values: Tuples, Records and Sum Types
	Dealing with Time: Functional Reactive Programming
	Putting It All Together: The Elm Architecture

	Design
	Types
	Definitions: Functions & Values
	Function Composition via Drag & Drop
	Evaluating Definitions
	Interactive Editing
	Errors
	Conclusion

	Arrowsmith
	User interface
	Definitions
	Imports
	Type definitions
	Evaluating a Module
	Plain Text View
	Project View

	Architecture
	Front-end
	Editor
	Environment
	Value Views

	Back-end
	Web Server
	Compilation
	Module
	Editing

	Limitations

	Evaluation
	read the vocabulary – what do these words mean?
	see the state – what is the computer thinking?
	follow the flow – what happens when?
	create by reacting – start somewhere, then sculpt
	create by abstracting – start concrete, then generalize
	Conclusion

	Future Work
	Conclusion
	Bibliography

